

1

Points Of View and Reuse in Logical and Physical
Architecture

Lars-Olof Kihlström

CAG Syntell

P.O.Box 10022

10055 Stockholm, Sweden

lars.olof.kihlstrom@cag.se

Matthew Hause

SSI

3208 Misty Oaks Way

Round Rock, Texas, USA

mhause@systemxi.com

Copyright © 2024 by Author Name. Permission granted to INCOSE to publish and use.

Abstract. The terms logical and physical architecture descriptions have been used for a long time.

There seems however to be different ideas of what they mean and what they imply. This paper makes

use of several examples to illustrate how logical and physical architecture can be used and the ad-

vantages that this can provide, especially in a system of system (SoS) context. It discusses how a logical

representation, and a physical representation should be viewed i.e., from where the modeler views the

system. The issue of so-called solutioneering in a logical architecture model is considered. It also pro-

vides a description of the reuse possibilities that exist between the logical architecture and the physical

architecture. The examples used to illustrate the points made are all based on the use of the Unified

Architecture Framework (UAF) since this explicitly makes the distinction between logical and physical

architectures.

Keywords. Logical Architecture, Physical architecture, UAF, Reuse.

Introduction

There is a lot of information concerning the concepts of logical architecture and physical architecture.

An attempt at using Google to find information yields many possible sites that discuss the concept in

various domains. One definition that turns up dealing with both concepts is the following: “Logical

architecture is the decomposition of the system into functional components/services independent of the

platform that will execute them, whereas deployment architecture specifies the representation of the

logical components in terms of platform-specific entities.” (Farcas et al, 2014). It is assumed here that

deployment architecture implies the same thing as physical architecture. Sometimes one gets the feeling

that the concepts are essentially standalone and that the relationship in between them is not explicitly

defined.

The Systems Engineering Body of Knowledge (SEBOK) states that “the logical architecture defines

system boundary and functions, from which more detailed system requirements can be derived. The

starting point for this process may be to identify functional requirements from the stakeholder require-

ments and to use this to start the architectural definition, or to begin with a high-level functional archi-

tecture view and use this as the basis for structuring system requirements. The exact approach taken

will often depend on whether the system is an evolution of an already understood product or service, or

a new and unprecedented solution. However, when the process is initiated, it is important that the stake-

holder requirements, system requirements, and logical architecture are all complete, consistent with

each other, and assessed together at the appropriate points in the systems life cycle model.” (INCOSE,

2021)

The INCOSE Systems Engineering Handbook (INCOSE, 2015) states “Logical models, also referred

to as conceptual models represent logical relationships about the system such as whole-part relationship,

an interconnection relationship between parts, or a precedence relationship between activities to name

a few.” It further discusses the development of different architecture viewpoints and to “Select, adapt

or develop models of the candidate architectures of the system such as logical and physical models. It

mailto:lars.olof.kihlstrom@cag.se
mailto:mhause@systemxi.com

2

is sometimes not necessary nor sufficient to use logical and physical models.” “The models to be used

are those that best address key stakeholder concerns. Logical models may include the functional, be-

havioral, or temporal models.” (INCOSE, 2015) Physical models will also contain these as well as

traceability to the logical model elements.

Chapter 16 of Friedenthal et al (2011) describes the logical architecture definition using the Object-

Oriented Systems Engineering Methodology (OOSEM). “This activity is part of the system architecture

design that includes decomposing the system into logical components that interact to satisfy system

requirements. The logical components are abstractions of components that implement the system, which

perform the system functionality without imposing implementation constraints. An example of a logical

component is a user interface that may be realized by a web browser or display console or an entry/exit

sensor that may be realized by an optical sensor. The logical architecture serves as an intermediate level

of abstraction between the system requirements and the physical architecture that can reduce the impact

of both requirements and technology changes on the physical design.” (Friedenthal et al, 2011)

Having a well-defined logical architecture is an essential part of the development process as it forms

the “requirements set of views” upon which the rest of the development process depends. Traceability

to this set of views is essential as it justifies the inclusion or exclusion of elements from the physical

architecture based on the ability to trace to the logical model.

ISO 42010 Views, Viewpoints, etc.

Prior to looking at the main concepts in this paper, it is important to define some commonly

used terms in the regarding architecture as they differ from normal English use. The majority

of the following definitions are taken from the SO/IEC/IEEE 42010:2022 Software, systems

and enterprise Architecture description standard.

• Enterprise – a “human undertaking or venture that has a mission, goals and objectives

to offer products or services, or to achieve a desired project outcome or business out-

come” (ISO 42010 2021).

• Architecture – fundamental concepts or properties related to an entity in its environment

and governing principles for the realization and evolution of this entity and its related

life cycle processes (ibid).

• Enterprise architecture – a set of “fundamental concepts and properties … and govern-

ing principles for the realization and evolution” of the enterprise (ibid).

• Architectural Description – a work product used to express the Architecture of some

System of Interest (ibid). OMG (2022) adds that it “provides executive-level summary

information about the architecture description in a consistent form to allow quick ref-

erence and comparison between architecture descriptions -- It includes assumptions,

constraints, and limitations that may affect high-level decisions relating to an architec-

ture-based work program.”

• Concern –a “matter of relevance or importance to a stakeholder regarding an entity of

interest” (ISO 42010) that will be addressed in an architecture).

• View –expresses the architecture of the system-of-interest in accordance with an archi-

tecture viewpoint (or simply, viewpoint). (Note: a view is an “information item, gov-

erned by an architecture viewpoint, comprising part of an architecture description” (ISO

42010) that communicates some aspect of an architecture and expressing the architec-

ture from the perspective of specific stakeholders regarding specific aspects of the ar-

chitecture entity and its environment (ISO 42020)).

• Viewpoint –frames (to formulate or construct in a particular style or language) one or

more concerns. A concern can be framed by more than one viewpoint. (Note: a view-

point is a “convention for the creation, interpretation and use of an architecture view to

frame one or more concerns” (ISO 42010) that governs the creation of views).

3

• View Specification – The representation of a view from a specific viewpoint. In the

context of the grids in the following section, the View Specifications at the boxes at the

intersections of the rows and columns.

A Tale of Several Architecture Frameworks

The related architecture frameworks described below were designed to make it easier to describe archi-

tecture for an enterprise as well as a system and system of systems. They all deal with the distinctions

between the logical and the physical architecture to various degrees. In the 1990’s the US Department

of Defense started with an existing framework used for Command and control systems named C2ISR

and created DoDAF Version 1.0 (Department of Defense Architecture Framework). A summary of the

viewpoints defined for DoDAF can be found in Figure 1.

Figure 1. DoDAF Viewpoints Version 1.

Each viewpoint contained a set of defined views, each describing a given set of information regarding

the system of interest to be documented as part of the view. The UK found areas that their Ministry of

Defence (MOD) wanted covered by an architecture framework, so their MOD created MODAF (Min-

istry Of Defence Architecture Framework). The additional viewpoints are shown in Figure 2

Figure 2. MODAF Viewpoints.

NATO created an architecture framework named NAF version 3.0 (NATO architecture framework)

that was based on MODAF. A partial new version in the form of NAF 3.1 was also created based on

updates to MODAF. The Service was created initially as part of the work in NATO. It was adopted in

the later versions of MODAF. The service viewpoint was eventually introduced in DoDAF, both in

DoDAF version 1.5 and DoDAF version 2. Based on the appearance of similar but different frameworks

4

that were not being updated synchronously, the Object Management Group (OMG) started to develop

an architecture standard that combined both MODAF, NAF and DoDAF to be used by tool vendors. It

was named UPDM (Unified Profile for DoDAF and MODAF). As time went by NATO created a new

version of NAF in the form of NAF version 4 and the grid that defines viewpoints and views. The

different views can be seen in more detail can be seen in Fel! Hittar inte referenskälla.Figure 3.

The NAF row named Logical Specifications deals with the Logical Architecture and the row named

Physical Resource Specifications deals with the Physical Architecture. Within the NAF version 4 spec-

ification, the logical viewpoints row is defined as follows: “The Viewpoints in the Logical Specifica-

tions row of the NAF grid support the solution-independent description of the logical nodes (elements

of capability), activities, and resource/information exchanges required to accomplish missions.” Within

the NAF version 4 specification, the physical resource viewpoints row is defined as follows:

“Viewpoints in the Physical Resource Specifications row of the NAF grid support the description of

the structure, connectivity and behavior of the various types of Resources. Resource Types include

people, organizations, artefacts, software and configurations of any or all of them. In particular, these

Viewpoints are used to specify how Types of Resources are configured and connected to deliver Capa-

bilities and Services. ”The relationship in between the logical and physical specifications are dealt with

by The L4-P4 viewpoint. “The L4-P4 Viewpoint is concerned with the linkage between functions de-

scribed in P4, Resource Functions, and operational activities specified in L4, Logical Activities.”

Figure 3. NATO Architecture Framework Version 4 (NAF V4)

Additional frameworks appeared dealing with security, human-factors as well as systems of systems.

These developments were reviewed by the OMG as new versions of UPDM was created. With the

additional concerns that needed to be covered, UPDM had outgrown the name and the third version of

UPDM was named UAF (Unified Architecture Framework). UAF created a set of viewpoints taking a

number of issues int account as shown in the viewpoint explanation in Figure 4. The detailed grid de-

scribing the views in each viewpoint for UAF version 1.1 is shown in Figure 5. Since this was published,

5

UAF has been updated once. The viewpoints dealt with remain the same but some changes to the views

have been performed. The detailed grid for UAF version 1.2 is shown in Figure 6.

Work is ongoing within OMG for a new update which will describe a common meta-model and two

implementations one making use of SysML version 1.7 and one making use of SysML version 2.

Figure 4. Unified Architecture Framework (UAF) viewpoints

Figure 5. UAF version 1.1 grid

6

Figure 6. Unified Architecture Framework (UAF) version 1.2

As can be seen the grids shown in Figure 5 and Figure 6 are slightly larger than the one shown in Fig-

ure 3, that is; they contains more rows and columns. This means that an architecture model using the

grid in Figure 5 or Figure 6 can contain additional information compared to the one shown in Figure

3. The grid in Figure 3 can be mapped to the grids in Figure 5 and Figure 6, i.e., all the information

contained in the smaller grid can be visualized within the larger grids.

Within the UAF specification, the Operational view specifications are defined as follows: “Definition:

describe the requirements, operational behavior, structure, and exchanges required to support (exhibit)

capabilities. Defines all operational elements in an implementation/solution independent manner.”

Within the Unified Architecture Framework specifications, the Resource view specifications are de-

fined as follows: “Definition: captures a solution architecture consisting of resources, e.g., organiza-

tional, software, artifacts, capability configurations, natural resources that implement the operational

requirements.”

The traceability views in both the operational and the resource domain essentially says the same thing

as stated in NAF version 4. The detailed domain meta-model in Figure 7 shows the relationship that is

supported between the elements within the resource model and the operational/ logical model.

Figure 7. Relationship Definition Between Operational/Logical and Resource Elements in UAF.

7

Here the green elements represent relationships, and the blue ones represent type element. The white

elements shown with the text in italics are abstract, i.e., there are several concrete elements in the frame-

work that inherit from them (Logical/operational: OperationalPerformer, OperationalArchitecture; Re-

sources: ResourceArchitecture, CapabilityConfiguration, System, ResourceArtefact, NaturalResource,

OrganizationalResource etc.). The key relationship between the operational/logical elements and the

physical resource elements is Implements. An operational agent can be shown as being implemented

by a resource performer or resource performers. In the same manner one or more operational agent may

be shown as being implemented by a resource performer. One or more operational activities can be

shown as being implemented by one or more functions that can be performed by a resource performer.

The real semantic meaning of the implements relationship can be quite complex.

Is this all there is? Is there more to this kind of relationship than meets the eye? A possible answer to

this question depends to a great extent on how operational/ logical architectures as well as physical

resource architectures are viewed and used.

Points Of View as regards logical and Resource Architectures

Persons who have spent time doing both operational/logical architectures as well have physical archi-

tectures may have noticed that the way of looking at the architecture elements are different. The fol-

lowing statement can be seen as a way of describing the difference in as short a sentence as possible.

When creating a logical/ operational architecture the logical elements required from a non-im-

plementational perspective are viewed from the outside. When creating a physical architecture

the resource elements required from an implementation-specific perspective are viewed from

within.

This means that there is a profound change of perspective when dealing with these two kinds of archi-

tectures. This is especially visible when attempting to come to grips with system of systems. An oper-

ational/logical architecture could be seen as making use of a perspective where the observer is attempt-

ing to describe the interactions and behavior of the logical elements when viewed from a balloon 100

meters above the system of systems in question. A similar approach for a logical architecture model

can be employed for much smaller systems that are composed of a set of logical components. The

observation height there may not be 100 meters but is still from the outside of the elements looking in

rather than from inside looking out. The most important aspects are what is visible to the observer in

terms of inputs, behavior in response to these inputs, and resulting outputs.

A physical architecture however will have as its starting point an actual implementation perspective of

each component and will view the complete system context from within the component being described.

A reader might at this point have noticed the term logical components as well as systems within a system

of systems and drawn the conclusion that this may well represent a significant departure from a logical

view of functionality. They may then have decided that what is being described here is solutioneering

i.e., a situation where the logical model is no longer logical but has been infected with solutions.

Creating a logical architecture is a form of balancing act. A perfect logical description of how something

is to be done still needs to be implementable in some form. If the logical functions become too amor-

phous the implementation will end up such that there is no real connection or mapping between the

logical/ operational architecture and the physical resource architecture despite any “implements” rela-

tionships that have been created between them and between structural elements.

If the operational/ logical architecture is to be of any use it needs to end up as a description that can be

used during the complete life cycle of the Enterprise/ System of Systems/ System to analyze and make

determinations of the impact of changed contexts, changed external environment, or changed require-

ments. Once such a logical analysis has been made, the implementational impact can then be analyzed.

Avoiding the logical analysis within a usable logical model and starting with the implementation can

result in the bigger picture being missed and that the change becomes unnecessarily complicated and

time-consuming. Using the logical model to speed things up does however require that the logical and

8

physical model elements have proper implements traces in between them that can be analyzed, under-

stood, and made use of.

For a logical/ operational model to be useful a couple of concepts need to be properly handled:

• Constraints

• Known resources.

Constraints and Known resources.

When creating a logical/ operational architecture of anything there are always constraints that need to

be adhered to as part of the logical elements that make up the architecture. These constraints can be

non-functional (weight, size, velocity, processing speed, available technologies) as well as functional

in the form of logical requirements that constrain the elements that are to be used within the architecture.

These can include conformance to environmental standards, policy in accordance with the domain, or

legal regulations due to the geographical location. Implementing a system in Kiruna in Northern Swe-

den with have different constraints than a system in the Algarve, Portugal. To ignore these constraints

even in the early stages of analysis in not wise nor beneficial to economical system development.

To guide the implementation, one must indicate the logical elements within the operational/ logical

architecture that are intended to satisfy functional requirements once they have been implemented. The

logical elements then need to show how the logic is being fulfilled within the model. The physical

resource architecture can use this as a means of determining the detailed functionality to be imple-

mented based on the solution space constraints.

A key issue here is also to ensure that the logical elements show a life cycle perspective. This means

that the model elements need to take account of all the logical requirements that they need to be able to

deal with. A logical element may well have to do several things in parallel and deal with any interference

and interactions between the different actions that are required. Ensuring that this is the case will make

the ensuing implementation easier since the implementation then only needs to concentrate on pure

implementation issues rather than a combination of logical and implementation concerns.

Known Resources

The Known resource concept is a way to deal with boundary conditions. Any System or System of

Systems or indeed Enterprise will contain elements or boundaries that it must adhere to, i.e., they are

the as they are and must be accepted and interacted with in the way they have been defined. Known

resources can be either outside the set of elements under consideration or they can be elements within

that cannot be changed in any fashion. Ignoring these elements will result in a system that will not

operate within its environment.

A typical example of constraints and known resources is the kind of predetermined platform that has

been decided for a set of kinds of products. An example of this would for instance be a platform decided

upon for different models of cars marketed by a manufacturer. Each model of the car must make use of

the specified generic platform. This implies that each model has a set of known resources that needs to

made use of. Each of these platform components is responsible for a given set of logic that need to be

used by any additional system or functionality that a specific model of the car needs. The constraints,

both non-functional as well as logical, taken together with known resources impose restrictions on what

the logical model needs to describe.

When creating logical models that take all the above into account there is sometimes an accusation of

solutioneering, i.e., creating a model that presupposes a solution. The previously mentioned balancing

act is precisely what is required when weighing the differences between solutioneering and the elements

defined for a logical model. Once this balance is achieved, the logical model can be used as a tool for

simulations and will directly benefit the actual implementation. The examples shown in the next section

are an attempt to illustrate this.

9

Operational/ Logical Architectures and Physical Architectures

The following examples are elaborations of existing models, papers and standards published previously.

The electric quarry example is taken from the Sjöberg et al (2017) paper, entitled An Industrial Example

of Using Enterprise Architecture to Speed Up Systems Development. It described a model created for

the quarry to define the necessary configuration of chargers, autonomous vehicles, etc. for the quarry

as well as cost considerations. In this paper, we examine the system to demonstrate how the logical

model informs the physical model. We also show how the physical model makes use of the logical

model for behavioral logic as well as interactions and demonstrates implementation coverage of the

elements defined in the logical model.

The Search and Rescue (SAR) example is taken from the example model document in the UAF speci-

fication (OMG, 2021). The purpose of that model was to fully illustrate the various UAF views as a

means of showing an example implementation of the UAF specification. While that document sought

to inform its readers of the complete UAF specification, this paper concentrates on how the logical and

physical models support one another. It also elaborates on some of the elements in that model further

than what was done in the example document.

The Electric Quarry

The first example deals with a specific system of systems model. It deals with a quarry where the quarry

will be handled by electric machines and where transportation of materiel will be performed by auton-

omous machines. An overall depiction of the quarry and its basic constituents can be found in Figure

8.

Figure 8. Rock Material Quarry Depiction.

The overall picture above is missing one specific item, namely an electric charger. The reason for per-

forming a model of this system of systems is the need to ensure that the site productivity is maxim-

ized, i.e., the amount of materiel processed per hour. To ensure this, it is necessary to turn a system of

system into a system. There are several constraints associated with the elements involved.

• The crusher is a stationary electrical device and produces a set amount of materiel to be trans-

ported per hour.

10

• The transporter is electrical as well as autonomous and needs to be charged when the battery

is getting low. It can only transport a fraction of the materiel that the crusher creates which

implies that a fleet of transporters is required that need to be controlled.

• Loading of the transporter can occur in more than one way: via a loader from a pile of mate-

riel deposited by the crusher or directly from the crusher.

• Loading and unloading takes time and productivity is affected by transporter queuing.

A logical model of the same kind of site can be seen in Figure 9. To determine the needed functional-

ity for managing a quarry many boundaries and known resources are included in the model. As can be

seen the model contains several elements that deal with boundary issues:

Known resources: Discard Materiel, Road, Distributed Materiel, Crushed Materiel, External Electric-

ity Grid, Facility Storage, Weather.

All the above has implications for a logical model that aims to ensure that the quarry site can be con-

trolled, and that production can be maximized. This means that from a logical perspective all the ele-

ments have behavior, including piles of materiel or roads and crossings. The piles of materiel can re-

port if they are becoming empty or overflowing, the roads are aware of the transporters or loaders that

drive on them. This is an abstraction of the realizations that are easily implemented by sensors that

monitor the road or the status of piles of materiel. Avoiding these implementation issues here allows

the modeler to concentrate on the logic alone.

Figure 9. Logical Model of the Quarry.

11

It is possible to create specifications of the detailed behavior of the different elements in the form of

state machines. An example of this is shown in Figure 10 and is concerned with the transporter ele-

ment in the logical model. The state machine takes a life cycle approach and deals with all the interac-

tions required by the transporter. This takes a birds-eye view of the transporter and focuses on the

logic required to perform its functionality within the quarry. It takes several constraints into account

such as power consumption while running, time to load, as well as unload, etc.

As can be seen it becomes quite complex when the logic for operations within the quarry for the trans-

porter needs to be defined. The set of data required to define the logical operation also becomes quite

large as attributes are added to control state-based behavior. The figure must be enlarged substantially

to see what is happening within and in between states. The actions performed within and between

states are defined by signals being received, data changes, or periodic time intervals (all defined prior

to the “/” sign). As each of these conditions materialize, actions are taken in the form of activities that

are shown in blue. They contain logic that causes data concerning the transporter to change as it exe-

cutes its behavior.

Figure 10. Logical State Machine for the Transporter

In Figure 11 the detailed definition of the data defined for the transporter can be seen. This shows:

Wait for configuration
«OperationalAtomicState»

Moving
OpTransportingOrder/ManageTransportationOrderWhileMoving();

OpMachineRequestsRoadEntryAtAck/ManageTransportationRoadEntryAck();

OpMachineRequestsRoadEntryAtNack/ManageTransportationRoadEntryNack();

OpMachineRequestsRoadExitAtAck/ManageTransportationRoadExitAck();

OpMachineRequestsRoadExitAtNack/ManageTransportationRoadExitNack();

OpMachineSpeedReductionRequest/ManageTransportationSpeedReductionRequest();

OpMachineNewPositionReached/UpdateTransportationRoadData();

after(move_inc)/SendTransportationMovementData();

OpMachineStopRequest[moving]/ManageTransportationStopRequest();

OpMachineStartRequest[!moving]/ManageTransportationStartRequest();

when(curr_dist_to_conn<dist_to_conn_req)/SendTransportationRoadExitAndEntry();

OpMachineSpeedIncreaseRequest/ManageTransportationSpeedIncreaseRequest();

«OperationalAtomicState»

Charging
Entry/SendTransportationChargingRequest();

OpTransportingChargingRequestAck/StartTransportationChargingAtChargePosition();

OpTransportingChargingRequestNack/DetermineRequestNotAcknowledgedAction();

OpChargingMajorFailure/DetermineChargingFailureAction();

OpTransportingChargingRequestQueuePos/PlaceInQueueOrUpdateQueuePosition();

OpTransportingChargingDisconnectRequest/SendTransportationDisconnectedAndDetermineAction();

OpTransportingOrder/ManageTransportationOrderWhileCharging();

after(charge_inc)/CheckChargeRefillAndWhenFilledDisconnect();

«OperationalAtomicState»

Unloading
OpTransportingOrder/ManageTransportationOrderWhileUnloading();

Entry/SendTransportationUnloadingStart();

after(curr_unload_time)/SendTransportationUnloadComplete();

«OperationalAtomicState»

Idle
OpTransportingOrder/ManageTransportationOrderWhileIdle();

«OperationalAtomicState»

Loading
OpTransportingOrder/ManageTransportationOrderWhileLoading();

Entry/SendTransportationLoadArrival();

OpTransportationLoadUse/ldr_id_use:=ld_id;

after(load_pos_check)[!load_pos_reached]/CheckIfNewLoadPosReached();

OpLoadingTransportationPositionRequest/DetermineTimeToReachNewLoadPos();

when(load_pos_reached)/SendLoadPositionRequestArrival();

when(load_pos_not_reacheable)/SendLoadPositionRequestNotReachable();

OpProcessedMaterielUnloadLoadingStartRequest[load_pos_not_reacheable]/SendTransportationLoadStartNack();

OpProcessedMaterielUnloadLoadingStartRequest[load_pos_reached]/SendTransportationLoadStartAcknowledge();

OpProcessedMaterielUnloadLoadingCompleted/SendLoadingAcknowledgedAndUseCompleted();

OpLoadingTransportationUsageAborted/IndicateTransportationLoadUsageAbort();

«OperationalAtomicState»

Unloading at facility
OpTransportingOrder/ManageTransportationOrderWhileAtFacility();

Entry/SendTransportationArrivalAtFacility();

OpTransportationArrivalAtFacilityAck/DetermineTimeToStartUnloadingAtFacility();

OpTransportationArrivalAtFacilityNack/DetermineActionBasedOnFacilityArrivalNack();

OpTransportationArrivalAtFacilityQueuePos/StorePlaceInQueueAtFacility();

when(facility_queue_pos=1)/DetermineTimeToStartUnloadingAtFacility();

after(facility_reach)[!facility_unload_started]/SendFacilityUnloadStart();

after(curr_unload_time)[facility_unload_started]/SendUnloadAtFacilityCompleted();

OpProcessedMaterielUnloadTransportCompletedAck/move_req:=True;

«OperationalAtomicState»

Loading at materiel processing
OpTransportingOrder/ManageTransportationOrderWhileAtProcessor();

OpTransportationProcessingQueueArrivalAck/DetermineProcessingQueuePositionArrival();

OpTransportationProcessingQueueArrivalNack/DetermineNotAcknowledgedQueueArrivalAction();

Entry/SendProcessingQueueArrival();

after(queue_pos_check)[!queue_pos_reached]/CheckIfPosReached();

when(queue_pos_reached)/SendTransportationPositionedInQueue();

OpTransportationProcessingQueueAdvance/SendTransportationPositionedInQueue();

OpTransportationProcessingQueueArrivalWait/waiting:=True;

after(queue_retest)[waiting]/SendProcessingQueueArrival();

«OperationalAtomicState»

Operational
OpStatusRequest/SendTransportationStatus();

OpTransportingMinorFailure/SetTransportationMinorFailure();

OpTransportingMajorFailure/SetTransportationMajorFailure();

«OperationalSequentialState»

Not operational
OpStatusRequest/SendTransportationStatus();

OpTransportingOrder/ManageTransportationOrderWhileNotOperational();

OpTransportingMajorFailure/SetTransportationMajorFailure()

OpTransportingMinorFailure/SetTransportationMinorFailure();

when(trnsprt_is_pending)/SendTransportationLoadNack();

when(trnsprt_is_ongoing)/SendAbortTransportationLoad();

«OperationalAtomicState»

Maintenance at logistics
OpStatusRequest/SendTransportationStatus();

OpTransportationMaintenenceCompleted/SetTransportationMaintenanceComplete();

OpTransportationMaintenanceStarted/SetTransportationMaintenenceStart();

OpTransportingOrder/ManageTransportationOrderWhileMaintained();

«OperationalAtomicState»

Major fault maintenence
OpStatusRequest/SendTransportationStatus();

OpTransportingOrder/ManageTransportationOrderWhileNotOperational();

OpTransportationMaintenenceCompleted/SetTransportationMaintenanceComplete();

«OperationalAtomicState»

Transporting state machine

«OperationalStateDescription»

Wait for configuration
«OperationalAtomicState»

Moving
OpTransportingOrder/ManageTransportationOrderWhileMoving();

OpMachineRequestsRoadEntryAtAck/ManageTransportationRoadEntryAck();

OpMachineRequestsRoadEntryAtNack/ManageTransportationRoadEntryNack();

OpMachineRequestsRoadExitAtAck/ManageTransportationRoadExitAck();

OpMachineRequestsRoadExitAtNack/ManageTransportationRoadExitNack();

OpMachineSpeedReductionRequest/ManageTransportationSpeedReductionRequest();

OpMachineNewPositionReached/UpdateTransportationRoadData();

after(move_inc)/SendTransportationMovementData();

OpMachineStopRequest[moving]/ManageTransportationStopRequest();

OpMachineStartRequest[!moving]/ManageTransportationStartRequest();

when(curr_dist_to_conn<dist_to_conn_req)/SendTransportationRoadExitAndEntry();

OpMachineSpeedIncreaseRequest/ManageTransportationSpeedIncreaseRequest();

«OperationalAtomicState»

Charging
Entry/SendTransportationChargingRequest();

OpTransportingChargingRequestAck/StartTransportationChargingAtChargePosition();

OpTransportingChargingRequestNack/DetermineRequestNotAcknowledgedAction();

OpChargingMajorFailure/DetermineChargingFailureAction();

OpTransportingChargingRequestQueuePos/PlaceInQueueOrUpdateQueuePosition();

OpTransportingChargingDisconnectRequest/SendTransportationDisconnectedAndDetermineAction();

OpTransportingOrder/ManageTransportationOrderWhileCharging();

after(charge_inc)/CheckChargeRefillAndWhenFilledDisconnect();

«OperationalAtomicState»

Unloading
OpTransportingOrder/ManageTransportationOrderWhileUnloading();

Entry/SendTransportationUnloadingStart();

after(curr_unload_time)/SendTransportationUnloadComplete();

«OperationalAtomicState»

Idle
OpTransportingOrder/ManageTransportationOrderWhileIdle();

«OperationalAtomicState»

Loading
OpTransportingOrder/ManageTransportationOrderWhileLoading();

Entry/SendTransportationLoadArrival();

OpTransportationLoadUse/ldr_id_use:=ld_id;

after(load_pos_check)[!load_pos_reached]/CheckIfNewLoadPosReached();

OpLoadingTransportationPositionRequest/DetermineTimeToReachNewLoadPos();

when(load_pos_reached)/SendLoadPositionRequestArrival();

when(load_pos_not_reacheable)/SendLoadPositionRequestNotReachable();

OpProcessedMaterielUnloadLoadingStartRequest[load_pos_not_reacheable]/SendTransportationLoadStartNack();

OpProcessedMaterielUnloadLoadingStartRequest[load_pos_reached]/SendTransportationLoadStartAcknowledge();

OpProcessedMaterielUnloadLoadingCompleted/SendLoadingAcknowledgedAndUseCompleted();

OpLoadingTransportationUsageAborted/IndicateTransportationLoadUsageAbort();

«OperationalAtomicState»

Unloading at facility
OpTransportingOrder/ManageTransportationOrderWhileAtFacility();

Entry/SendTransportationArrivalAtFacility();

OpTransportationArrivalAtFacilityAck/DetermineTimeToStartUnloadingAtFacility();

OpTransportationArrivalAtFacilityNack/DetermineActionBasedOnFacilityArrivalNack();

OpTransportationArrivalAtFacilityQueuePos/StorePlaceInQueueAtFacility();

when(facility_queue_pos=1)/DetermineTimeToStartUnloadingAtFacility();

after(facility_reach)[!facility_unload_started]/SendFacilityUnloadStart();

after(curr_unload_time)[facility_unload_started]/SendUnloadAtFacilityCompleted();

OpProcessedMaterielUnloadTransportCompletedAck/move_req:=True;

«OperationalAtomicState»

Loading at materiel processing
OpTransportingOrder/ManageTransportationOrderWhileAtProcessor();

OpTransportationProcessingQueueArrivalAck/DetermineProcessingQueuePositionArrival();

OpTransportationProcessingQueueArrivalNack/DetermineNotAcknowledgedQueueArrivalAction();

Entry/SendProcessingQueueArrival();

after(queue_pos_check)[!queue_pos_reached]/CheckIfPosReached();

when(queue_pos_reached)/SendTransportationPositionedInQueue();

OpTransportationProcessingQueueAdvance/SendTransportationPositionedInQueue();

OpTransportationProcessingQueueArrivalWait/waiting:=True;

after(queue_retest)[waiting]/SendProcessingQueueArrival();

«OperationalAtomicState»

Operational
OpStatusRequest/SendTransportationStatus();

OpTransportingMinorFailure/SetTransportationMinorFailure();

OpTransportingMajorFailure/SetTransportationMajorFailure();

«OperationalSequentialState»

Moving
OpTransportingOrder/ManageTransportationOrderWhileMoving();

OpMachineRequestsRoadEntryAtAck/ManageTransportationRoadEntryAck();

OpMachineRequestsRoadEntryAtNack/ManageTransportationRoadEntryNack();

OpMachineRequestsRoadExitAtAck/ManageTransportationRoadExitAck();

OpMachineRequestsRoadExitAtNack/ManageTransportationRoadExitNack();

OpMachineSpeedReductionRequest/ManageTransportationSpeedReductionRequest();

OpMachineNewPositionReached/UpdateTransportationRoadData();

after(move_inc)/SendTransportationMovementData();

OpMachineStopRequest[moving]/ManageTransportationStopRequest();

OpMachineStartRequest[!moving]/ManageTransportationStartRequest();

when(curr_dist_to_conn<dist_to_conn_req)/SendTransportationRoadExitAndEntry();

OpMachineSpeedIncreaseRequest/ManageTransportationSpeedIncreaseRequest();

«OperationalAtomicState»

Charging
Entry/SendTransportationChargingRequest();

OpTransportingChargingRequestAck/StartTransportationChargingAtChargePosition();

OpTransportingChargingRequestNack/DetermineRequestNotAcknowledgedAction();

OpChargingMajorFailure/DetermineChargingFailureAction();

OpTransportingChargingRequestQueuePos/PlaceInQueueOrUpdateQueuePosition();

OpTransportingChargingDisconnectRequest/SendTransportationDisconnectedAndDetermineAction();

OpTransportingOrder/ManageTransportationOrderWhileCharging();

after(charge_inc)/CheckChargeRefillAndWhenFilledDisconnect();

«OperationalAtomicState»

Unloading
OpTransportingOrder/ManageTransportationOrderWhileUnloading();

Entry/SendTransportationUnloadingStart();

after(curr_unload_time)/SendTransportationUnloadComplete();

«OperationalAtomicState»

Idle
OpTransportingOrder/ManageTransportationOrderWhileIdle();

«OperationalAtomicState»

Loading
OpTransportingOrder/ManageTransportationOrderWhileLoading();

Entry/SendTransportationLoadArrival();

OpTransportationLoadUse/ldr_id_use:=ld_id;

after(load_pos_check)[!load_pos_reached]/CheckIfNewLoadPosReached();

OpLoadingTransportationPositionRequest/DetermineTimeToReachNewLoadPos();

when(load_pos_reached)/SendLoadPositionRequestArrival();

when(load_pos_not_reacheable)/SendLoadPositionRequestNotReachable();

OpProcessedMaterielUnloadLoadingStartRequest[load_pos_not_reacheable]/SendTransportationLoadStartNack();

OpProcessedMaterielUnloadLoadingStartRequest[load_pos_reached]/SendTransportationLoadStartAcknowledge();

OpProcessedMaterielUnloadLoadingCompleted/SendLoadingAcknowledgedAndUseCompleted();

OpLoadingTransportationUsageAborted/IndicateTransportationLoadUsageAbort();

«OperationalAtomicState»

Unloading at facility
OpTransportingOrder/ManageTransportationOrderWhileAtFacility();

Entry/SendTransportationArrivalAtFacility();

OpTransportationArrivalAtFacilityAck/DetermineTimeToStartUnloadingAtFacility();

OpTransportationArrivalAtFacilityNack/DetermineActionBasedOnFacilityArrivalNack();

OpTransportationArrivalAtFacilityQueuePos/StorePlaceInQueueAtFacility();

when(facility_queue_pos=1)/DetermineTimeToStartUnloadingAtFacility();

after(facility_reach)[!facility_unload_started]/SendFacilityUnloadStart();

after(curr_unload_time)[facility_unload_started]/SendUnloadAtFacilityCompleted();

OpProcessedMaterielUnloadTransportCompletedAck/move_req:=True;

«OperationalAtomicState»

Loading at materiel processing
OpTransportingOrder/ManageTransportationOrderWhileAtProcessor();

OpTransportationProcessingQueueArrivalAck/DetermineProcessingQueuePositionArrival();

OpTransportationProcessingQueueArrivalNack/DetermineNotAcknowledgedQueueArrivalAction();

Entry/SendProcessingQueueArrival();

after(queue_pos_check)[!queue_pos_reached]/CheckIfPosReached();

when(queue_pos_reached)/SendTransportationPositionedInQueue();

OpTransportationProcessingQueueAdvance/SendTransportationPositionedInQueue();

OpTransportationProcessingQueueArrivalWait/waiting:=True;

after(queue_retest)[waiting]/SendProcessingQueueArrival();

«OperationalAtomicState»

Not operational
OpStatusRequest/SendTransportationStatus();

OpTransportingOrder/ManageTransportationOrderWhileNotOperational();

OpTransportingMajorFailure/SetTransportationMajorFailure()

OpTransportingMinorFailure/SetTransportationMinorFailure();

when(trnsprt_is_pending)/SendTransportationLoadNack();

when(trnsprt_is_ongoing)/SendAbortTransportationLoad();

«OperationalAtomicState»

Maintenance at logistics
OpStatusRequest/SendTransportationStatus();

OpTransportationMaintenenceCompleted/SetTransportationMaintenanceComplete();

OpTransportationMaintenanceStarted/SetTransportationMaintenenceStart();

OpTransportingOrder/ManageTransportationOrderWhileMaintained();

«OperationalAtomicState»

Major fault maintenence
OpStatusRequest/SendTransportationStatus();

OpTransportingOrder/ManageTransportationOrderWhileNotOperational();

OpTransportationMaintenenceCompleted/SetTransportationMaintenanceComplete();

«OperationalAtomicState»

/

when(status=Fault || OutOfElectricalPower || OutOfElectricalPowerMinorFault)/
SetNonOperationalTransportationAttributes();

when(dist_to_end<dist_margin && end=FacilityStorage)/
SetTransportationArrivalAttributes(); ...

OpProcessedMaterielUnloadTransportCompletedAck/
ResetTransportationLoadValues();
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();

when(dist_to_end<dist_margin && end=Charging)/
SetTransportationArrivalAttributes();

when(move_req)/
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();...

OpTransportationMaintenanceStarted/
SetTransportationMaintenenceStart();

when(dist_to_end<dist_margin && end=LogisticsSupport)/
SendTransportationLogisticsArrival();

when(status=Normal || MinorFault)/
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();

when(status=Normal || MinorFault)/
CheckPendingTransportationOrder();

when(at_elmnt=FacilityStorage)/

when(at_elmnt=Charging)/

when(at_elmnt=Road)/
SendStartRequest();

when(move_req)/
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();

when(at_elmnt=Idle)/

OpConfigTransporting/
SetTransportationProperties();

when(at_elmnt=Facility)/

when(at_elmnt=LoadingTransportArea)/

when(dist_to_end<dist_margin && end=Facility)/
SetTransportationArrivalAttributes();

when(dist_to_end<dist_margin && end=LoadingTransportArea)/
SetTransportationArrivalAttributes();

when(dist_to_end<dist_margin && end=Idle)/
SetTransportationArrivalAttributes();

when(move_req)/
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();...

when(move_req)/
ResetTransportationLoadValues();
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();...

when(dist_to_end<dist_margin && end=MaterielProcessing)/
SetTransportationArrivalAttributes(); ...

when(at_elmnt=MaterielProcessingQueue)/

when(move_req)/
CheckPendingTransportationOrder();
SetTransportationMovingAttributes();
SendTransportationRoadEntryRequest();

12

• The interfaces that the transporter has.

• Value properties defined for the transporter.

• References to other model elements

• Operations defined for the transporter and finally

• The state machine defined for the transporter.

Figure 11. Detailed Model Elements for the transporter.

In the logical model the road, an obvious known resource, is also described by a state machine. This

state machine is shown in Figure 12. It can determine if there are transporters travelling on the road as

well as where they are. It can also communicate with the transporters themselves to manage them while

they are on the road. Logically this is not a problem. It allows the model to focus on the exact handling

of transporters on the road without have the issue blurred by the possible implementation. There are

several ways in which this can be implemented. The following are examples of ways to realize the

functionality required.

• Road sensors and edge computing associated with each road and crossing.

• Centralized control from the quarry controller based on GPS monitoring of transporters and

loaders.

13

• Visually via a monitoring tower, which may be limited if the tower is quite large.

Figure 12. Logical State Machine for the Road.

The physical architecture model for the quarry at the highest level is shown in Figure 13. This looks a

lot like the logical model with some differences such as the communication system. This was disre-

garded in the logical model which concentrated on required exchanges and behavior, and simply as-

sumed communication was possible.

It becomes very similar simply due to the need to take the same kinds of constraints as well as known

resources into account that the logical architecture was required to do. There are however additional

implementation-based constraints such as the fact that while the logical architecture could focus on the

needs for exchange of information in between the logical entities, the physical architecture needs to

take the implementation of this communication into account. From an implementation perspective, the

logical materiel processing part was divided into two parts, the crusher as well as the mobile conveyor.

Naturally, the known resources here are not implemented as such but can be subdivide3d into different

parts that can be implemented and provide the logical functionality needed. The piles of materiel can

be monitored by monitoring equipment to ensure that they do not overflow. The weather can be moni-

tored such that any special handling of inclement weather can be dealt with and as indicated the roads

can be monitored by special equipment.

Wait for configuration data

«OperationalAtomicState»

Not being travelled on
OpMachineRequestsRoadEntryAt/AssessRoadEntryRequest();

«OperationalAtomicState»

Being travelled on
OpMachineRequestsRoadEntryAt/AssessRoadEntryRequest();

OpMachineRequestsRoadExitAt/AssessRoadExitRequest();

OpMachineLeavesRoadAt/UpdateRoadDataForExit();mchnOnRd:=mchnOnRd-1;

OpMachineEntersRoadAt/UpdateRoadDataForEntry();mchnOnRd:=mchnOnRd+1;

OpMachinePositionReached/ManageMachinePositionReached();

OpMachineStoppedAt/ManageMachineStop();

OpMachineServiceArrival/ManageMachineServiceArrival();

OpMachineServiceDeparture/ManageMachineServiceDeparture();

after(wait_chk)/ManageWaitingMachines();

OpMachineStartRequestNack/ManageStartRequestNack();

OpMachineStartRequestAck/ManageStartRequestAck();

OpMachineReadyToStart/ManageReadyToStart();

«OperationalAtomicState»

Usable
OpStatusRequest/SendRoadStatus();

OpRoadMinorFault/ManageRoadMinorFault();

OpRoadRepairStarted/ManageRoadRepairStarted();

OpRoadRepairComplete/ManageRoadRepairComplete();

OpRoadMajorFault/ManageRoadMajorFault();

after(whtr_intrvl)/SendWeatherRequest();

OpWeatherInfoRdResponse/UpdateWeatherRoadInfluence();

«OperationalSequentialState»

Not usable
OpStatusRequest/SendRoadStatus();

OpMachineRequestsRoadEntryAt/SendRoadRequestEntryNack();

OpRoadRepairStarted/ManageRoadRepairStarted();

OpRoadRepairComplete/ManageRoadRepairComplete();

after(whtr_intrvl)/SendWeatherRequest();

OpWeatherInfoRdResponse/UpdateWeatherRoadInfluence();

«OperationalAtomicState»

Road state machine

«OperationalStateDescription»

Wait for configuration data

«OperationalAtomicState»

Not being travelled on
OpMachineRequestsRoadEntryAt/AssessRoadEntryRequest();

«OperationalAtomicState»

Being travelled on
OpMachineRequestsRoadEntryAt/AssessRoadEntryRequest();

OpMachineRequestsRoadExitAt/AssessRoadExitRequest();

OpMachineLeavesRoadAt/UpdateRoadDataForExit();mchnOnRd:=mchnOnRd-1;

OpMachineEntersRoadAt/UpdateRoadDataForEntry();mchnOnRd:=mchnOnRd+1;

OpMachinePositionReached/ManageMachinePositionReached();

OpMachineStoppedAt/ManageMachineStop();

OpMachineServiceArrival/ManageMachineServiceArrival();

OpMachineServiceDeparture/ManageMachineServiceDeparture();

after(wait_chk)/ManageWaitingMachines();

OpMachineStartRequestNack/ManageStartRequestNack();

OpMachineStartRequestAck/ManageStartRequestAck();

OpMachineReadyToStart/ManageReadyToStart();

«OperationalAtomicState»

Usable
OpStatusRequest/SendRoadStatus();

OpRoadMinorFault/ManageRoadMinorFault();

OpRoadRepairStarted/ManageRoadRepairStarted();

OpRoadRepairComplete/ManageRoadRepairComplete();

OpRoadMajorFault/ManageRoadMajorFault();

after(whtr_intrvl)/SendWeatherRequest();

OpWeatherInfoRdResponse/UpdateWeatherRoadInfluence();

«OperationalSequentialState»

Not being travelled on
OpMachineRequestsRoadEntryAt/AssessRoadEntryRequest();

«OperationalAtomicState»

Being travelled on
OpMachineRequestsRoadEntryAt/AssessRoadEntryRequest();

OpMachineRequestsRoadExitAt/AssessRoadExitRequest();

OpMachineLeavesRoadAt/UpdateRoadDataForExit();mchnOnRd:=mchnOnRd-1;

OpMachineEntersRoadAt/UpdateRoadDataForEntry();mchnOnRd:=mchnOnRd+1;

OpMachinePositionReached/ManageMachinePositionReached();

OpMachineStoppedAt/ManageMachineStop();

OpMachineServiceArrival/ManageMachineServiceArrival();

OpMachineServiceDeparture/ManageMachineServiceDeparture();

after(wait_chk)/ManageWaitingMachines();

OpMachineStartRequestNack/ManageStartRequestNack();

OpMachineStartRequestAck/ManageStartRequestAck();

OpMachineReadyToStart/ManageReadyToStart();

«OperationalAtomicState»

Not usable
OpStatusRequest/SendRoadStatus();

OpMachineRequestsRoadEntryAt/SendRoadRequestEntryNack();

OpRoadRepairStarted/ManageRoadRepairStarted();

OpRoadRepairComplete/ManageRoadRepairComplete();

after(whtr_intrvl)/SendWeatherRequest();

OpWeatherInfoRdResponse/UpdateWeatherRoadInfluence();

«OperationalAtomicState»

/

OpMachineEntersRoadAt/
UpdateRoadDataForEntry();
mchnOnRd:=1;

when(mchnOnRd=0)/

OpConfigRoad/SetRoadProperties();

OpRoadClosed/

OpRoadOpened/

14

Figure 13. Physical Architecture of the Quarry.

In Figure 14, a physical architecture breakdown can be seen for the transporter. It has been broken down

into the following parts:

• Transporter mchn: The machinery parts of the transporter, hardware, and software.

• Auto: The transporters internal autonomous control equipment, hardware, and software.

• Sensors: The sensor parts of the transporter, hardware, and software.

• Comms: The communications parts of the transporter, hardware, and software.

• HMI: The human machine interface, i.e., controls that allow a human to interact directly with

the transporter. The transporter does not have a driving compartment as such, an interface with

manual controls as well as displays may well exist.

• Qpilot: The part of the transporter devoted to managing the interactions with other parts of the

quarry, i.e., the hardware and software required to work with other elements within the quarry.

A state machine has been described for the Qpilot part is shown in Figure 15.

15

Figure 14. Transporter Physical Resource Architecture.

Comparing the logical state machine to the physical state machine shows extensive similarities between

the two. This means that if the logical state machine had been validated by means of simulation, a

considerable work reduction will take place in the actual software implementation of the elements deal-

ing with creating the software required to run the transporter within the quarry. The above connection

exists for all the elements that have a counterpart within the logical model.

The match is not 100% since the Qpilot state machine must take inputs from the other parts of the

transporter into account, i.e., there are additional pieces of information that needs to be dealt with that

the logical state machine did not have to deal with. Some of the logical interactions described in the

logical state machine will appear within the Qpilot state machine mediated by the external elements

within the transporter.

This logical state machines were created by looking at each of the elements in the logical model from

outside, taking constraints and known resources into account. These were then transformed into the

functionality required and defined as state machines within the physical elements. This transformation

can be used to ensure functional compliance in a real implementation. It will also reduce the amount of

implementation work as the state machine clearly defines the required behavior far better than a text

description ever could.

16

Figure 15. Transporter Qpilot State Machine.

Search and Rescue (SAR)
Further examples can be found in the example model used in the UAF version 1.2 standard. It deals

with Maritime SAR (MSAR) and is an adapted version to demonstrate logical/physical mapping. Search

and rescue in a maritime setting has been around for a long time usually in a very simplified form as an

example of architecture modeling. The adapted logical model of the MSAR example can be seen in

Figure 16.

Initialised

Entry/SetXA15Properties();

SwXaMinorFailure/SetXA15MinorFailure();

SwXaMinorFailureCleared/SetXA15MinorFailureCleared();

SwXaMinorMaintenanceStart/SetXA15MinorMaintenanceStart();

SwXaMinorMaintenanceComplete/SetXA15MinorMaintenanceComplete();

SwXaMajorFailure/SetXA15MajorFailure();

SwXaMajorFailureCleared/SetXA15MajorFailureCleared();

Status handling

Status handling
SwXaStatusRequest/SendXA15InternalStatusRequests();

SwXaStatusForCommsSig/StoreStatusForXA15CommsAndCheckIfAllAvailable();

SwXaStatusForHmiSig/StoreStatusForXA15HmiAndCheckIfAllAvailable();

SwXaStatusForMchnSig/StoreStatusForXA15MchnAndCheckIfAllAvailable();

SwXaStatusForSensorsSig/StoreStatusForXA15rSensorsAndCheckIfAllAvailable();

when(newXA15StatusAvailable=True)/SendXA15StatusReport();

SwXaStatusForAutoSig/StoreStatusForXA15AutoAndCheckIfAllAvailable();

«ResourceAtomicState»

«ResourceSequentialState»

In use

Wait for stop ack
SwCrshrStopMchnRequestNack/SendXA15StopRequestPending();

SwCrshrStopRequest/SendXA15StopMchnAutoRequest();

«ResourceAtomicState»

Wait for start ack
«ResourceAtomicState»

Idle
SwXaOrder/ManageXA15OrderWhileIdle();

«ResourceAtomicState»

Moving
SwXaOrder/ManageXA15OrderWhileMoving();

SwXaNewPositionReached/UpdateXA15RoadData();

SwXaRequestsRoadEntryAtAck/ManageXA15RoadEntryAck();

SwXaRequestsRoadEntryAtNack/ManageXA15RoadEntryNack();

SwXaRequestsRoadExitAtAck/ManageXA15RoadExitAck();

SwXaRequestsRoadExitAtNack/ManageXA15RoadExitNack();

SwXaSpeedIncreaseRequest/ManageXA15SpeedIncreaseRequest();

SwXaSpeedReductionRequest/ManageXA15SpeedDecreaseRequest();

SwXaStartMovingRequest/SendXA15StartMovingRequest();

SwXaStopMovingRequest/ManageXA15StopMovingRequest();

SwXaRoadClosed/UpdateXA15ClosedRoadData();

SwXaRoadMajorFaultDetected/IndicateRoadMajorFaultToSprvsn();

SwXaRoadMinorFaultDetected/IndicateRoadMinorFaultToSprvsn();

SwXaRoadOpened/UpdateXA15OpenedRoadData();

SwXaRoadPosition/UpdateXA15PositionRoadData();

after(move_inc)/SendXA15MovementData();

when(curr_dist_to_conn<dist_to_conn_req)/SendXA15RoadExitAndEntry();

«ResourceAtomicState»

Loading from WheelLoader

SwXaOrder/ManageXA15OrderWhileLoadingFromWheelLoader();

SwXaXA15PositionRequest/StartXA15TowardsNewLoadPos();

SwXaXA15ProcessedMaterielUnloadLoadingCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaXA15ProcessedMaterielUnloadLoadingStarted/ManageXA15LoadingByWheelLoaderStarted();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=True]/SendXA15LoadStartAck();

SwXaXA15UsageAborted/IndicateXA15LoaUsageAbort();

SwXaXA15UsageCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaProcessedMaterielLoadingStartDetected/ManageXA15WheelLoaderLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageXA15WheelLoaderLoadingCompleteDetected();

after(load_pos_check)/CheckIfNewXA15LoadPosReached();

when(load_pos_reached=True)/SendXA15LoadPositionRequestArrival();

when(load_pos_not_reacheable=True)/SendXA15LoadPositionRequestNotReachable();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=False]/SendXA15LoadStartNack();

«ResourceAtomicState»

Loading from Processor
SwXaOrder/ManageXA15OrderWhileLoadingFromProcessor();

Entry/SendProcessingLoadQueueArrival();

SwXaMobConvProcessingQueueArrivalAck/ManageProcessingQueueuArrivalAck();

SwXaMobConvProcessingQueueArrivalNack/ManageProcessingQueueuArrivalNack();

SwXaMobConvProcessingQueueAdvance/ManageProcessingQueueuArrivalAdvance();

SwXaMobConvProcessingQueueArrivalWait/ManageProcessingQueueuArrivalWait();

SwXaProcessedMaterielLoadingStartDetected/SendProcessingLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageAndSendProcessingLoadCompleteDetected();

«ResourceAtomicState»

Loading
«ResourceSequentialState»

Charging

SwXaChargingConnectDetected/StartXA15ChargingAtChargePosition();

SwXaChargingConnected/ManageChargingConnectedIndicationFromChargingStation();

SwXaChargingDisconnectDetected/StopXA15ChargingAtChargePosition();

SwXaChargingDisconnected/ManageChargingDisconnectedIndicationFromChargingStation();

SwXaChargingRequestAck/StartXA15ChargingAtChargePosition();

SwXaChargingRequestNack/DetermineXA15ChargingFailureAction();

SwXaChargingRequestQueuePos/PlaceXA15InChargingQueueOrUpdateQueuePosition();

SwWlChargingLevel/CheckXA15ChargeRefillAndWhenFilledDisconnect();

Entry/SendXA15ChargingRequest();

after(charge_inc)/RequestXA15ChargeLevel();

SwXaOrder/ManageXA15OrderWhileCharging();

«ResourceAtomicState»

Unloading at Facility

SendXA15ArrivalAtFacility/ManageXA15OrderWhileAtFacility();

Entry/SendXA15ArrivalAtFacility();

SwXaXA15ArrivalAtFacilityAck/StartMovingTowardsUnloadingPositionAtFacility();

SwXaXA15ArrivalAtFacilityNack/DetermineXA15ActionBasedOnFacilityArrivalNack();

SwXaXA15ArrivalAtFacilityQueuePos/StoreXA15PlaceInQueueAtFacility();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleteDetected();

SwXaProcessedMaterielUnloadCompletedFacilityAck/SetXA15UnloadCompleted();

after(unload_pos_check)/CheckDistanceToFacilityLoadPosition();

when(unload_pos_reached=True)/StartXA15Unload();

«ResourceAtomicState»

Unlaoding at Facility Storage

SwXaOrder/ManageXA15OrderWhileAtFacilityStorage();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleted();

Entry/StartXA15Unload();

«ResourceAtomicState»

Unloading
«ResourceSequentialState»

Operational
«ResourceSequentialState»

Wait for start request
«ResourceAtomicState»

Not operational
SwXaOrder/ManageXA15OrderWhileNotOperational();

SwXaRepairStarted/SetXA15RepairStarted();

SwXaRepairCompleted/SetXA15RepairCompleted();

«ResourceAtomicState»

Maintenance at logistics
SwXaOrder/ManageXA15OrderWhileMaintained();

SwXaMajorMaintenanceComplete/SetXA15MajorMaintenanceComplete();

SwXaMajorMaintenanceStart/SetXA15MajorMaintenanceStart();

SwXaMinorMaintenanceStart/SetXA15MinorMaintenanceStart();

SwXaMinorMaintenanceComplete/SetXA15MinorMaintenanceComplete();

Entry/at_elmnt:=LogisticsSupport;

SwXaLogisticsMaintenanceStarted/SetXA15LogisticsMaintenanceStarted();

SwXaLogisticsMaintenanceCompleted/SetXA15LogisticsMaintenanceCompleted();

«ResourceAtomicState»

«ResourceSequentialState»

«ResourceConcurrentState»

«ResourceFinalState»

XA15Sw state machine

«ResourceStateMachine»

Initialised

Entry/SetXA15Properties();

SwXaMinorFailure/SetXA15MinorFailure();

SwXaMinorFailureCleared/SetXA15MinorFailureCleared();

SwXaMinorMaintenanceStart/SetXA15MinorMaintenanceStart();

SwXaMinorMaintenanceComplete/SetXA15MinorMaintenanceComplete();

SwXaMajorFailure/SetXA15MajorFailure();

SwXaMajorFailureCleared/SetXA15MajorFailureCleared();

Status handling

Status handling
SwXaStatusRequest/SendXA15InternalStatusRequests();

SwXaStatusForCommsSig/StoreStatusForXA15CommsAndCheckIfAllAvailable();

SwXaStatusForHmiSig/StoreStatusForXA15HmiAndCheckIfAllAvailable();

SwXaStatusForMchnSig/StoreStatusForXA15MchnAndCheckIfAllAvailable();

SwXaStatusForSensorsSig/StoreStatusForXA15rSensorsAndCheckIfAllAvailable();

when(newXA15StatusAvailable=True)/SendXA15StatusReport();

SwXaStatusForAutoSig/StoreStatusForXA15AutoAndCheckIfAllAvailable();

«ResourceAtomicState»

«ResourceSequentialState»

In use

Wait for stop ack
SwCrshrStopMchnRequestNack/SendXA15StopRequestPending();

SwCrshrStopRequest/SendXA15StopMchnAutoRequest();

«ResourceAtomicState»

Wait for start ack
«ResourceAtomicState»

Idle
SwXaOrder/ManageXA15OrderWhileIdle();

«ResourceAtomicState»

Moving
SwXaOrder/ManageXA15OrderWhileMoving();

SwXaNewPositionReached/UpdateXA15RoadData();

SwXaRequestsRoadEntryAtAck/ManageXA15RoadEntryAck();

SwXaRequestsRoadEntryAtNack/ManageXA15RoadEntryNack();

SwXaRequestsRoadExitAtAck/ManageXA15RoadExitAck();

SwXaRequestsRoadExitAtNack/ManageXA15RoadExitNack();

SwXaSpeedIncreaseRequest/ManageXA15SpeedIncreaseRequest();

SwXaSpeedReductionRequest/ManageXA15SpeedDecreaseRequest();

SwXaStartMovingRequest/SendXA15StartMovingRequest();

SwXaStopMovingRequest/ManageXA15StopMovingRequest();

SwXaRoadClosed/UpdateXA15ClosedRoadData();

SwXaRoadMajorFaultDetected/IndicateRoadMajorFaultToSprvsn();

SwXaRoadMinorFaultDetected/IndicateRoadMinorFaultToSprvsn();

SwXaRoadOpened/UpdateXA15OpenedRoadData();

SwXaRoadPosition/UpdateXA15PositionRoadData();

after(move_inc)/SendXA15MovementData();

when(curr_dist_to_conn<dist_to_conn_req)/SendXA15RoadExitAndEntry();

«ResourceAtomicState»

Loading from WheelLoader

SwXaOrder/ManageXA15OrderWhileLoadingFromWheelLoader();

SwXaXA15PositionRequest/StartXA15TowardsNewLoadPos();

SwXaXA15ProcessedMaterielUnloadLoadingCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaXA15ProcessedMaterielUnloadLoadingStarted/ManageXA15LoadingByWheelLoaderStarted();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=True]/SendXA15LoadStartAck();

SwXaXA15UsageAborted/IndicateXA15LoaUsageAbort();

SwXaXA15UsageCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaProcessedMaterielLoadingStartDetected/ManageXA15WheelLoaderLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageXA15WheelLoaderLoadingCompleteDetected();

after(load_pos_check)/CheckIfNewXA15LoadPosReached();

when(load_pos_reached=True)/SendXA15LoadPositionRequestArrival();

when(load_pos_not_reacheable=True)/SendXA15LoadPositionRequestNotReachable();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=False]/SendXA15LoadStartNack();

«ResourceAtomicState»

Loading from Processor
SwXaOrder/ManageXA15OrderWhileLoadingFromProcessor();

Entry/SendProcessingLoadQueueArrival();

SwXaMobConvProcessingQueueArrivalAck/ManageProcessingQueueuArrivalAck();

SwXaMobConvProcessingQueueArrivalNack/ManageProcessingQueueuArrivalNack();

SwXaMobConvProcessingQueueAdvance/ManageProcessingQueueuArrivalAdvance();

SwXaMobConvProcessingQueueArrivalWait/ManageProcessingQueueuArrivalWait();

SwXaProcessedMaterielLoadingStartDetected/SendProcessingLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageAndSendProcessingLoadCompleteDetected();

«ResourceAtomicState»

Loading
«ResourceSequentialState»

Charging

SwXaChargingConnectDetected/StartXA15ChargingAtChargePosition();

SwXaChargingConnected/ManageChargingConnectedIndicationFromChargingStation();

SwXaChargingDisconnectDetected/StopXA15ChargingAtChargePosition();

SwXaChargingDisconnected/ManageChargingDisconnectedIndicationFromChargingStation();

SwXaChargingRequestAck/StartXA15ChargingAtChargePosition();

SwXaChargingRequestNack/DetermineXA15ChargingFailureAction();

SwXaChargingRequestQueuePos/PlaceXA15InChargingQueueOrUpdateQueuePosition();

SwWlChargingLevel/CheckXA15ChargeRefillAndWhenFilledDisconnect();

Entry/SendXA15ChargingRequest();

after(charge_inc)/RequestXA15ChargeLevel();

SwXaOrder/ManageXA15OrderWhileCharging();

«ResourceAtomicState»

Unloading at Facility

SendXA15ArrivalAtFacility/ManageXA15OrderWhileAtFacility();

Entry/SendXA15ArrivalAtFacility();

SwXaXA15ArrivalAtFacilityAck/StartMovingTowardsUnloadingPositionAtFacility();

SwXaXA15ArrivalAtFacilityNack/DetermineXA15ActionBasedOnFacilityArrivalNack();

SwXaXA15ArrivalAtFacilityQueuePos/StoreXA15PlaceInQueueAtFacility();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleteDetected();

SwXaProcessedMaterielUnloadCompletedFacilityAck/SetXA15UnloadCompleted();

after(unload_pos_check)/CheckDistanceToFacilityLoadPosition();

when(unload_pos_reached=True)/StartXA15Unload();

«ResourceAtomicState»

Unlaoding at Facility Storage

SwXaOrder/ManageXA15OrderWhileAtFacilityStorage();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleted();

Entry/StartXA15Unload();

«ResourceAtomicState»

Unloading
«ResourceSequentialState»

Operational
«ResourceSequentialState»

Wait for start request
«ResourceAtomicState»

Not operational
SwXaOrder/ManageXA15OrderWhileNotOperational();

SwXaRepairStarted/SetXA15RepairStarted();

SwXaRepairCompleted/SetXA15RepairCompleted();

«ResourceAtomicState»

Maintenance at logistics
SwXaOrder/ManageXA15OrderWhileMaintained();

SwXaMajorMaintenanceComplete/SetXA15MajorMaintenanceComplete();

SwXaMajorMaintenanceStart/SetXA15MajorMaintenanceStart();

SwXaMinorMaintenanceStart/SetXA15MinorMaintenanceStart();

SwXaMinorMaintenanceComplete/SetXA15MinorMaintenanceComplete();

Entry/at_elmnt:=LogisticsSupport;

SwXaLogisticsMaintenanceStarted/SetXA15LogisticsMaintenanceStarted();

SwXaLogisticsMaintenanceCompleted/SetXA15LogisticsMaintenanceCompleted();

«ResourceAtomicState»

«ResourceSequentialState»

«ResourceConcurrentState»

Status handling

Status handling
SwXaStatusRequest/SendXA15InternalStatusRequests();

SwXaStatusForCommsSig/StoreStatusForXA15CommsAndCheckIfAllAvailable();

SwXaStatusForHmiSig/StoreStatusForXA15HmiAndCheckIfAllAvailable();

SwXaStatusForMchnSig/StoreStatusForXA15MchnAndCheckIfAllAvailable();

SwXaStatusForSensorsSig/StoreStatusForXA15rSensorsAndCheckIfAllAvailable();

when(newXA15StatusAvailable=True)/SendXA15StatusReport();

SwXaStatusForAutoSig/StoreStatusForXA15AutoAndCheckIfAllAvailable();

«ResourceAtomicState»

«ResourceSequentialState»

Status handling
SwXaStatusRequest/SendXA15InternalStatusRequests();

SwXaStatusForCommsSig/StoreStatusForXA15CommsAndCheckIfAllAvailable();

SwXaStatusForHmiSig/StoreStatusForXA15HmiAndCheckIfAllAvailable();

SwXaStatusForMchnSig/StoreStatusForXA15MchnAndCheckIfAllAvailable();

SwXaStatusForSensorsSig/StoreStatusForXA15rSensorsAndCheckIfAllAvailable();

when(newXA15StatusAvailable=True)/SendXA15StatusReport();

SwXaStatusForAutoSig/StoreStatusForXA15AutoAndCheckIfAllAvailable();

«ResourceAtomicState»

In use

Wait for stop ack
SwCrshrStopMchnRequestNack/SendXA15StopRequestPending();

SwCrshrStopRequest/SendXA15StopMchnAutoRequest();

«ResourceAtomicState»

Wait for start ack
«ResourceAtomicState»

Idle
SwXaOrder/ManageXA15OrderWhileIdle();

«ResourceAtomicState»

Moving
SwXaOrder/ManageXA15OrderWhileMoving();

SwXaNewPositionReached/UpdateXA15RoadData();

SwXaRequestsRoadEntryAtAck/ManageXA15RoadEntryAck();

SwXaRequestsRoadEntryAtNack/ManageXA15RoadEntryNack();

SwXaRequestsRoadExitAtAck/ManageXA15RoadExitAck();

SwXaRequestsRoadExitAtNack/ManageXA15RoadExitNack();

SwXaSpeedIncreaseRequest/ManageXA15SpeedIncreaseRequest();

SwXaSpeedReductionRequest/ManageXA15SpeedDecreaseRequest();

SwXaStartMovingRequest/SendXA15StartMovingRequest();

SwXaStopMovingRequest/ManageXA15StopMovingRequest();

SwXaRoadClosed/UpdateXA15ClosedRoadData();

SwXaRoadMajorFaultDetected/IndicateRoadMajorFaultToSprvsn();

SwXaRoadMinorFaultDetected/IndicateRoadMinorFaultToSprvsn();

SwXaRoadOpened/UpdateXA15OpenedRoadData();

SwXaRoadPosition/UpdateXA15PositionRoadData();

after(move_inc)/SendXA15MovementData();

when(curr_dist_to_conn<dist_to_conn_req)/SendXA15RoadExitAndEntry();

«ResourceAtomicState»

Loading from WheelLoader

SwXaOrder/ManageXA15OrderWhileLoadingFromWheelLoader();

SwXaXA15PositionRequest/StartXA15TowardsNewLoadPos();

SwXaXA15ProcessedMaterielUnloadLoadingCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaXA15ProcessedMaterielUnloadLoadingStarted/ManageXA15LoadingByWheelLoaderStarted();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=True]/SendXA15LoadStartAck();

SwXaXA15UsageAborted/IndicateXA15LoaUsageAbort();

SwXaXA15UsageCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaProcessedMaterielLoadingStartDetected/ManageXA15WheelLoaderLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageXA15WheelLoaderLoadingCompleteDetected();

after(load_pos_check)/CheckIfNewXA15LoadPosReached();

when(load_pos_reached=True)/SendXA15LoadPositionRequestArrival();

when(load_pos_not_reacheable=True)/SendXA15LoadPositionRequestNotReachable();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=False]/SendXA15LoadStartNack();

«ResourceAtomicState»

Loading from Processor
SwXaOrder/ManageXA15OrderWhileLoadingFromProcessor();

Entry/SendProcessingLoadQueueArrival();

SwXaMobConvProcessingQueueArrivalAck/ManageProcessingQueueuArrivalAck();

SwXaMobConvProcessingQueueArrivalNack/ManageProcessingQueueuArrivalNack();

SwXaMobConvProcessingQueueAdvance/ManageProcessingQueueuArrivalAdvance();

SwXaMobConvProcessingQueueArrivalWait/ManageProcessingQueueuArrivalWait();

SwXaProcessedMaterielLoadingStartDetected/SendProcessingLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageAndSendProcessingLoadCompleteDetected();

«ResourceAtomicState»

Loading
«ResourceSequentialState»

Charging

SwXaChargingConnectDetected/StartXA15ChargingAtChargePosition();

SwXaChargingConnected/ManageChargingConnectedIndicationFromChargingStation();

SwXaChargingDisconnectDetected/StopXA15ChargingAtChargePosition();

SwXaChargingDisconnected/ManageChargingDisconnectedIndicationFromChargingStation();

SwXaChargingRequestAck/StartXA15ChargingAtChargePosition();

SwXaChargingRequestNack/DetermineXA15ChargingFailureAction();

SwXaChargingRequestQueuePos/PlaceXA15InChargingQueueOrUpdateQueuePosition();

SwWlChargingLevel/CheckXA15ChargeRefillAndWhenFilledDisconnect();

Entry/SendXA15ChargingRequest();

after(charge_inc)/RequestXA15ChargeLevel();

SwXaOrder/ManageXA15OrderWhileCharging();

«ResourceAtomicState»

Unloading at Facility

SendXA15ArrivalAtFacility/ManageXA15OrderWhileAtFacility();

Entry/SendXA15ArrivalAtFacility();

SwXaXA15ArrivalAtFacilityAck/StartMovingTowardsUnloadingPositionAtFacility();

SwXaXA15ArrivalAtFacilityNack/DetermineXA15ActionBasedOnFacilityArrivalNack();

SwXaXA15ArrivalAtFacilityQueuePos/StoreXA15PlaceInQueueAtFacility();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleteDetected();

SwXaProcessedMaterielUnloadCompletedFacilityAck/SetXA15UnloadCompleted();

after(unload_pos_check)/CheckDistanceToFacilityLoadPosition();

when(unload_pos_reached=True)/StartXA15Unload();

«ResourceAtomicState»

Unlaoding at Facility Storage

SwXaOrder/ManageXA15OrderWhileAtFacilityStorage();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleted();

Entry/StartXA15Unload();

«ResourceAtomicState»

Unloading
«ResourceSequentialState»

Operational
«ResourceSequentialState»

Wait for start request
«ResourceAtomicState»

Not operational
SwXaOrder/ManageXA15OrderWhileNotOperational();

SwXaRepairStarted/SetXA15RepairStarted();

SwXaRepairCompleted/SetXA15RepairCompleted();

«ResourceAtomicState»

Maintenance at logistics
SwXaOrder/ManageXA15OrderWhileMaintained();

SwXaMajorMaintenanceComplete/SetXA15MajorMaintenanceComplete();

SwXaMajorMaintenanceStart/SetXA15MajorMaintenanceStart();

SwXaMinorMaintenanceStart/SetXA15MinorMaintenanceStart();

SwXaMinorMaintenanceComplete/SetXA15MinorMaintenanceComplete();

Entry/at_elmnt:=LogisticsSupport;

SwXaLogisticsMaintenanceStarted/SetXA15LogisticsMaintenanceStarted();

SwXaLogisticsMaintenanceCompleted/SetXA15LogisticsMaintenanceCompleted();

«ResourceAtomicState»

«ResourceSequentialState»

Wait for stop ack
SwCrshrStopMchnRequestNack/SendXA15StopRequestPending();

SwCrshrStopRequest/SendXA15StopMchnAutoRequest();

«ResourceAtomicState»

Wait for start ack
«ResourceAtomicState»

Idle
SwXaOrder/ManageXA15OrderWhileIdle();

«ResourceAtomicState»

Moving
SwXaOrder/ManageXA15OrderWhileMoving();

SwXaNewPositionReached/UpdateXA15RoadData();

SwXaRequestsRoadEntryAtAck/ManageXA15RoadEntryAck();

SwXaRequestsRoadEntryAtNack/ManageXA15RoadEntryNack();

SwXaRequestsRoadExitAtAck/ManageXA15RoadExitAck();

SwXaRequestsRoadExitAtNack/ManageXA15RoadExitNack();

SwXaSpeedIncreaseRequest/ManageXA15SpeedIncreaseRequest();

SwXaSpeedReductionRequest/ManageXA15SpeedDecreaseRequest();

SwXaStartMovingRequest/SendXA15StartMovingRequest();

SwXaStopMovingRequest/ManageXA15StopMovingRequest();

SwXaRoadClosed/UpdateXA15ClosedRoadData();

SwXaRoadMajorFaultDetected/IndicateRoadMajorFaultToSprvsn();

SwXaRoadMinorFaultDetected/IndicateRoadMinorFaultToSprvsn();

SwXaRoadOpened/UpdateXA15OpenedRoadData();

SwXaRoadPosition/UpdateXA15PositionRoadData();

after(move_inc)/SendXA15MovementData();

when(curr_dist_to_conn<dist_to_conn_req)/SendXA15RoadExitAndEntry();

«ResourceAtomicState»

Loading from WheelLoader

SwXaOrder/ManageXA15OrderWhileLoadingFromWheelLoader();

SwXaXA15PositionRequest/StartXA15TowardsNewLoadPos();

SwXaXA15ProcessedMaterielUnloadLoadingCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaXA15ProcessedMaterielUnloadLoadingStarted/ManageXA15LoadingByWheelLoaderStarted();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=True]/SendXA15LoadStartAck();

SwXaXA15UsageAborted/IndicateXA15LoaUsageAbort();

SwXaXA15UsageCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaProcessedMaterielLoadingStartDetected/ManageXA15WheelLoaderLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageXA15WheelLoaderLoadingCompleteDetected();

after(load_pos_check)/CheckIfNewXA15LoadPosReached();

when(load_pos_reached=True)/SendXA15LoadPositionRequestArrival();

when(load_pos_not_reacheable=True)/SendXA15LoadPositionRequestNotReachable();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=False]/SendXA15LoadStartNack();

«ResourceAtomicState»

Loading from Processor
SwXaOrder/ManageXA15OrderWhileLoadingFromProcessor();

Entry/SendProcessingLoadQueueArrival();

SwXaMobConvProcessingQueueArrivalAck/ManageProcessingQueueuArrivalAck();

SwXaMobConvProcessingQueueArrivalNack/ManageProcessingQueueuArrivalNack();

SwXaMobConvProcessingQueueAdvance/ManageProcessingQueueuArrivalAdvance();

SwXaMobConvProcessingQueueArrivalWait/ManageProcessingQueueuArrivalWait();

SwXaProcessedMaterielLoadingStartDetected/SendProcessingLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageAndSendProcessingLoadCompleteDetected();

«ResourceAtomicState»

Loading
«ResourceSequentialState»

Charging

SwXaChargingConnectDetected/StartXA15ChargingAtChargePosition();

SwXaChargingConnected/ManageChargingConnectedIndicationFromChargingStation();

SwXaChargingDisconnectDetected/StopXA15ChargingAtChargePosition();

SwXaChargingDisconnected/ManageChargingDisconnectedIndicationFromChargingStation();

SwXaChargingRequestAck/StartXA15ChargingAtChargePosition();

SwXaChargingRequestNack/DetermineXA15ChargingFailureAction();

SwXaChargingRequestQueuePos/PlaceXA15InChargingQueueOrUpdateQueuePosition();

SwWlChargingLevel/CheckXA15ChargeRefillAndWhenFilledDisconnect();

Entry/SendXA15ChargingRequest();

after(charge_inc)/RequestXA15ChargeLevel();

SwXaOrder/ManageXA15OrderWhileCharging();

«ResourceAtomicState»

Unloading at Facility

SendXA15ArrivalAtFacility/ManageXA15OrderWhileAtFacility();

Entry/SendXA15ArrivalAtFacility();

SwXaXA15ArrivalAtFacilityAck/StartMovingTowardsUnloadingPositionAtFacility();

SwXaXA15ArrivalAtFacilityNack/DetermineXA15ActionBasedOnFacilityArrivalNack();

SwXaXA15ArrivalAtFacilityQueuePos/StoreXA15PlaceInQueueAtFacility();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleteDetected();

SwXaProcessedMaterielUnloadCompletedFacilityAck/SetXA15UnloadCompleted();

after(unload_pos_check)/CheckDistanceToFacilityLoadPosition();

when(unload_pos_reached=True)/StartXA15Unload();

«ResourceAtomicState»

Unlaoding at Facility Storage

SwXaOrder/ManageXA15OrderWhileAtFacilityStorage();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleted();

Entry/StartXA15Unload();

«ResourceAtomicState»

Unloading
«ResourceSequentialState»

Operational
«ResourceSequentialState»

Wait for stop ack
SwCrshrStopMchnRequestNack/SendXA15StopRequestPending();

SwCrshrStopRequest/SendXA15StopMchnAutoRequest();

«ResourceAtomicState»

Wait for start ack
«ResourceAtomicState»

Idle
SwXaOrder/ManageXA15OrderWhileIdle();

«ResourceAtomicState»

Moving
SwXaOrder/ManageXA15OrderWhileMoving();

SwXaNewPositionReached/UpdateXA15RoadData();

SwXaRequestsRoadEntryAtAck/ManageXA15RoadEntryAck();

SwXaRequestsRoadEntryAtNack/ManageXA15RoadEntryNack();

SwXaRequestsRoadExitAtAck/ManageXA15RoadExitAck();

SwXaRequestsRoadExitAtNack/ManageXA15RoadExitNack();

SwXaSpeedIncreaseRequest/ManageXA15SpeedIncreaseRequest();

SwXaSpeedReductionRequest/ManageXA15SpeedDecreaseRequest();

SwXaStartMovingRequest/SendXA15StartMovingRequest();

SwXaStopMovingRequest/ManageXA15StopMovingRequest();

SwXaRoadClosed/UpdateXA15ClosedRoadData();

SwXaRoadMajorFaultDetected/IndicateRoadMajorFaultToSprvsn();

SwXaRoadMinorFaultDetected/IndicateRoadMinorFaultToSprvsn();

SwXaRoadOpened/UpdateXA15OpenedRoadData();

SwXaRoadPosition/UpdateXA15PositionRoadData();

after(move_inc)/SendXA15MovementData();

when(curr_dist_to_conn<dist_to_conn_req)/SendXA15RoadExitAndEntry();

«ResourceAtomicState»

Loading from WheelLoader

SwXaOrder/ManageXA15OrderWhileLoadingFromWheelLoader();

SwXaXA15PositionRequest/StartXA15TowardsNewLoadPos();

SwXaXA15ProcessedMaterielUnloadLoadingCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaXA15ProcessedMaterielUnloadLoadingStarted/ManageXA15LoadingByWheelLoaderStarted();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=True]/SendXA15LoadStartAck();

SwXaXA15UsageAborted/IndicateXA15LoaUsageAbort();

SwXaXA15UsageCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaProcessedMaterielLoadingStartDetected/ManageXA15WheelLoaderLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageXA15WheelLoaderLoadingCompleteDetected();

after(load_pos_check)/CheckIfNewXA15LoadPosReached();

when(load_pos_reached=True)/SendXA15LoadPositionRequestArrival();

when(load_pos_not_reacheable=True)/SendXA15LoadPositionRequestNotReachable();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=False]/SendXA15LoadStartNack();

«ResourceAtomicState»

Loading from Processor
SwXaOrder/ManageXA15OrderWhileLoadingFromProcessor();

Entry/SendProcessingLoadQueueArrival();

SwXaMobConvProcessingQueueArrivalAck/ManageProcessingQueueuArrivalAck();

SwXaMobConvProcessingQueueArrivalNack/ManageProcessingQueueuArrivalNack();

SwXaMobConvProcessingQueueAdvance/ManageProcessingQueueuArrivalAdvance();

SwXaMobConvProcessingQueueArrivalWait/ManageProcessingQueueuArrivalWait();

SwXaProcessedMaterielLoadingStartDetected/SendProcessingLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageAndSendProcessingLoadCompleteDetected();

«ResourceAtomicState»

Loading
«ResourceSequentialState»

Loading from WheelLoader

SwXaOrder/ManageXA15OrderWhileLoadingFromWheelLoader();

SwXaXA15PositionRequest/StartXA15TowardsNewLoadPos();

SwXaXA15ProcessedMaterielUnloadLoadingCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaXA15ProcessedMaterielUnloadLoadingStarted/ManageXA15LoadingByWheelLoaderStarted();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=True]/SendXA15LoadStartAck();

SwXaXA15UsageAborted/IndicateXA15LoaUsageAbort();

SwXaXA15UsageCompleted/SendXA15WheelLoaderAckAndUseCompleted();

SwXaProcessedMaterielLoadingStartDetected/ManageXA15WheelLoaderLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageXA15WheelLoaderLoadingCompleteDetected();

after(load_pos_check)/CheckIfNewXA15LoadPosReached();

when(load_pos_reached=True)/SendXA15LoadPositionRequestArrival();

when(load_pos_not_reacheable=True)/SendXA15LoadPositionRequestNotReachable();

SwXaXA15ProcessedMaterielUnloadLoadingStartRequest[load_pos_reached=False]/SendXA15LoadStartNack();

«ResourceAtomicState»

Loading from Processor
SwXaOrder/ManageXA15OrderWhileLoadingFromProcessor();

Entry/SendProcessingLoadQueueArrival();

SwXaMobConvProcessingQueueArrivalAck/ManageProcessingQueueuArrivalAck();

SwXaMobConvProcessingQueueArrivalNack/ManageProcessingQueueuArrivalNack();

SwXaMobConvProcessingQueueAdvance/ManageProcessingQueueuArrivalAdvance();

SwXaMobConvProcessingQueueArrivalWait/ManageProcessingQueueuArrivalWait();

SwXaProcessedMaterielLoadingStartDetected/SendProcessingLoadingStartDetected();

SwXaProcessedMaterielLoadingCompleteDetected/ManageAndSendProcessingLoadCompleteDetected();

«ResourceAtomicState»

Charging

SwXaChargingConnectDetected/StartXA15ChargingAtChargePosition();

SwXaChargingConnected/ManageChargingConnectedIndicationFromChargingStation();

SwXaChargingDisconnectDetected/StopXA15ChargingAtChargePosition();

SwXaChargingDisconnected/ManageChargingDisconnectedIndicationFromChargingStation();

SwXaChargingRequestAck/StartXA15ChargingAtChargePosition();

SwXaChargingRequestNack/DetermineXA15ChargingFailureAction();

SwXaChargingRequestQueuePos/PlaceXA15InChargingQueueOrUpdateQueuePosition();

SwWlChargingLevel/CheckXA15ChargeRefillAndWhenFilledDisconnect();

Entry/SendXA15ChargingRequest();

after(charge_inc)/RequestXA15ChargeLevel();

SwXaOrder/ManageXA15OrderWhileCharging();

«ResourceAtomicState»

Unloading at Facility

SendXA15ArrivalAtFacility/ManageXA15OrderWhileAtFacility();

Entry/SendXA15ArrivalAtFacility();

SwXaXA15ArrivalAtFacilityAck/StartMovingTowardsUnloadingPositionAtFacility();

SwXaXA15ArrivalAtFacilityNack/DetermineXA15ActionBasedOnFacilityArrivalNack();

SwXaXA15ArrivalAtFacilityQueuePos/StoreXA15PlaceInQueueAtFacility();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleteDetected();

SwXaProcessedMaterielUnloadCompletedFacilityAck/SetXA15UnloadCompleted();

after(unload_pos_check)/CheckDistanceToFacilityLoadPosition();

when(unload_pos_reached=True)/StartXA15Unload();

«ResourceAtomicState»

Unlaoding at Facility Storage

SwXaOrder/ManageXA15OrderWhileAtFacilityStorage();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleted();

Entry/StartXA15Unload();

«ResourceAtomicState»

Unloading
«ResourceSequentialState»

Unloading at Facility

SendXA15ArrivalAtFacility/ManageXA15OrderWhileAtFacility();

Entry/SendXA15ArrivalAtFacility();

SwXaXA15ArrivalAtFacilityAck/StartMovingTowardsUnloadingPositionAtFacility();

SwXaXA15ArrivalAtFacilityNack/DetermineXA15ActionBasedOnFacilityArrivalNack();

SwXaXA15ArrivalAtFacilityQueuePos/StoreXA15PlaceInQueueAtFacility();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleteDetected();

SwXaProcessedMaterielUnloadCompletedFacilityAck/SetXA15UnloadCompleted();

after(unload_pos_check)/CheckDistanceToFacilityLoadPosition();

when(unload_pos_reached=True)/StartXA15Unload();

«ResourceAtomicState»

Unlaoding at Facility Storage

SwXaOrder/ManageXA15OrderWhileAtFacilityStorage();

SwXaProcessedMaterielUnloadStartedDetected/SetXA15UnloadStarted();

SwXaProcessedMaterielUnloadCompleteDetected/SetXA15UnloadCompleted();

Entry/StartXA15Unload();

«ResourceAtomicState»

Wait for start request
«ResourceAtomicState»

Not operational
SwXaOrder/ManageXA15OrderWhileNotOperational();

SwXaRepairStarted/SetXA15RepairStarted();

SwXaRepairCompleted/SetXA15RepairCompleted();

«ResourceAtomicState»

Maintenance at logistics
SwXaOrder/ManageXA15OrderWhileMaintained();

SwXaMajorMaintenanceComplete/SetXA15MajorMaintenanceComplete();

SwXaMajorMaintenanceStart/SetXA15MajorMaintenanceStart();

SwXaMinorMaintenanceStart/SetXA15MinorMaintenanceStart();

SwXaMinorMaintenanceComplete/SetXA15MinorMaintenanceComplete();

Entry/at_elmnt:=LogisticsSupport;

SwXaLogisticsMaintenanceStarted/SetXA15LogisticsMaintenanceStarted();

SwXaLogisticsMaintenanceCompleted/SetXA15LogisticsMaintenanceCompleted();

«ResourceAtomicState»

«ResourceFinalState»

/

when(xaPowerAvailable<xa_elLimit)/when(lgstcsXa.oprtn.criticalOngoing=True)/

/

when(status=Fault
)/SetNonOperationalXa15Attributes();

SwXaStartRequest/RequesXA15MachineStartPossibleAcknowledgement();

SwCrshrStopMchnRequestAck/
SendXA15StopRequestAck();

/

SwXaStartAutoPilotRequestNack/
SendXA15StartRequestNack();

when(dist_to_end<dist_margin && end=Idle)/
SetXA15ArrivalAttributes();

SwCrshrStopRequest/
SendXA15StopMchnAutoRequest();

when(status=Normal || MinorFault ||
InfraPowerReduced || MinorFaultInfraPowerReduced)/
CheckPendingXA15Order();

when(at_elmnt=Idle)/

when(at_elmnt=Road)/
SendXA15StartMovingRequest();

when(status=Normal || MinorFault ||
InfraPowerReduced || MinorFaultInfraPowerReduced &&

allMaintenanceComplete=True)/CheckPendingXA15Order();

when(dist_to_end<dist_margin && end=LogisticsSupport)/
SendXA15LogisticsArrival();

when(move_req=True)/
CheckPendingXA15Order();
SetXA15MovingAttributes();
SendXA15RoadEntryRequest();

when(move_req=True)/
CheckPendingXA15Order();
SetXA15MovingAttributes();
SendXA15RoadEntryRequest();

when(dist_to_end<dist_margin && end=LoadingFromWheelLoaderArea)/
SetXA15ArrivalAttributes();

when(at_elmnt=LoadingFromWheelLoaderArea)/

when(dist_to_end<dist_margin && end=LoadingFromProcessor)/
SetXA15ArrivalAttributes();

SwXaStartAutoPilotRequestAck/
SendXA15StartRequestAck();

when(at_elmnt=LoadingFromProcessor)/

SwCrshrStopRequest/
SendCrusherMchnStopRequest();

when(move_req=True)/
CheckPendingXA15Order();
SetXA15MovingAttributes();
SendXA15RoadEntryRequest();

when(dist_to_end<dist_margin && end=Facility)/
SetXA15ArrivalAttributes();

when(at_elmnt=Facility)/

when(at_elmnt=Charging)/

when(at_elmnt=FacilityStorage)/

when(dist_to_end<dist_margin && end=FacilityStorage)/
SetXA15ArrivalAttributes();

when(dist_to_end<dist_margin && end=Charging)/
SetXA15ArrivalAttributes();

when(move_req=True)/
CheckPendingXA15Order();
SetXA15MovingAttributes();
SendXA15RoadEntryRequest();

17

Figure 16. Maritime Search and Rescue (MSAR) Logical Model.

The additions to the original simple model are due to the need to deal with constraints as well as logical

known resources. They can be summarized as follows:

• The influence of the sea as well as the weather needs to be considered for search, rescue, and

the distressed element.

• The interactions required with the known resource National Health Service (NHS) needs to be

considered.

• The handling of more than one MSAR operation at one time has been added.

• Depending on the kind of distress, several instances of the search and rescue elements operating

under their own constraints such as range of operation, number of persons that can be handled

etc., needs to be considered.

• As the situation changes within an operation, more search and rescue assets may need to be

either added or withdrawn from an operation.

• Search or rescue asset failures during an operation need to be considered.

• A tactical Command and Control (C2) node is needed to manage operations.

• An asset resource base is needed from which search or rescue assets can be requested.

The logical state machine that deals with search is shown in Figure 17. The state machine has been

created such that all the above constraints have been dealt with for the logical search asset. Some of the

actions required have been placed in concurrent regions since they need to be dealt with irrespective of

where in the search state the search element happens to be in. The semantics of a concurrent states

within a region of a state mean that they are executed at the same time, or concurrently. These are status

handling, search, and resource handling regions.

18

Figure 17. Logical State Machine for the Search element in MSAR.

Within a physical resource architecture there are several kinds of elements that can act as realization of

the search and rescue elements in the logical model. Figure 18 shows candidate implementations of the

search and rescue elements. The SAR helicopter and the SAR ship implement both the Search and

Rescue logical elements. The SAR search aircraft as well as the SAR search drone only implement the

search element as they are not equipped for rescue.

Figure 18. Physical Resource Implementation of Logical MSAR Elements.

19

The same kind of relationship as described for the Transporter in the quarry exists for the different

implementations of the search and rescue logical elements in the maritime SAR system. As previously,

each implementation can be broken down into a lot of different parts, containing both hardware and

software. The part that specifically deals with the search and rescue operation context can reuse the

logic described in the logical architecture to a high degree. The reuse id not 100% but sufficiently large

to have a distinct impact on the realization work effort.

A complete physical architecture for an MSAR operation is shown in Figure 19.

Figure 19. Complete MSAR Physical Architecture.

Some of the external and internal context is shown in the above figure such as the asset base from

which search and rescue assets can be allocated, the command-and-control center, monitoring stations

as well as deployable medical reception facilities. It also shows possible external communications

such as cellular networks and the Internet made use of by the MSAR architecture and finally the ex-

ternal public health service.

The MSAR operations part of the complete MSAR physical architecture can be further expanded as

shown in Figure 20. This shows the physical systems associated with the MSAR operation (aircraft,

drone, helicopter, ship), possible forms of distressed maritime vessels and persons, sea and weather that

needs to be taken into account and also the radio communications environment through which all of the

communications in between the MSAR assets needs to pass.

In the same fashion as for the quarry the drone architecture consists of different parts as shown in

Figure 21:

20

• Drone radio communication system

• Drone tactical data link

• Drone aviation system

• Drone GPS

• Loudspeaker, floodlight, radar, and visual/ IR detection systems

• Drone control system: this being the system tasked with the management of the drone within

the maritime search and rescue context.

Figure 20. The Maritime SAR Operation.

Figure 21. Resource Architecture Diagram for SAR Search Drone.

It is then possible to expand the Drone control system into a set of adaptors to provide interfaces to the

external systems and the actual control software for the drone for MSAR as shown in Figure 22.

21

Figure 22. SAR Drone Control System Components.

Finally, the state machine for the Drone SAR search control can be defined as shown in Figure 23.

Figure 23. Drone SAR Search Control State Machine.

22

When comparing the logical search element state machine with the Drone SAR search control state

machine the similarities are obvious, especially within the region named search. This region is expanded

further in Figure 24. The similarities are not 100% but are large enough to warrant a detailed handling

of the logical model and ensure that the logical model is validated by means of simulations of various

possible scenarios.

The differences between the state machines result from the logical element abstractions such as the

information interchange between logical Search and Logical Weather and Sea. From a logical point of

view this allows testing of different scenarios, but the influence will be dependent on data from the

logical elements (search, rescue as well as distressed party) and this is why this interaction is included

in the logical model. The influence that weather has on the physical implementation of search in the

form of the drone end up as data from the drone aviation system. It may seem that since the drone is

airborne, the impact from sea would be less but the ability of the drone to detect a distressed party may

well be impacted by the sea and could require handling of both radar, infrared detectors as well as the

floodlight.

Figure 24. Search Region of Drone MSAR Control Software.

Conclusion

The examples shown here attempts to illustrate that the relationship between an operational/logical

model and a physical realization model is quite close. It is quite common however to view the logical

model as an initial analysis that is then left once the realization work begins. Based on the examples

given in this paper, an attempt has been made to illustrate that there is a great benefit in treating the

logical architecture as being as important as the physical architecture and that it should be maintained

during the lifetime of the system of interest to the same extent as the physical architecture.

A logical architecture that takes proper account of real-world constraints as well as known resources

will make it possible to speed up the development of the physical realization. If the logical architecture

is used as the basis for simulation, logical problems can be identified and fixed prior to the detailed

implementation. The logical architecture will also directly influence the detailed development within

the physical realization.

The logical architecture also serves as a way of quickly getting to grips with requirement changes for

the system of interest as well as understanding the impact of environmental context changes.

23

References
DoDAF DoD CIO, 2012, DoD Architecture Framework Version 2.02, DoD Deputy Chief Information

Officer, Available online at http://dodcio.defense.gov/dodaf20/dodaf20_pes.aspx, accessed

June, 2014.

Farcas E., Farcas C., & Krüger I., 2014, Economics-Driven Software Architecture, Chapter Chapter

12 - Successful CyberInfrastructures for E-Health, Published by Morgan Kaufmann

Friedenthal, S., Moore, A., Steiner, R. Practical Guide to SysML: The Systems Modeling Language

Second Edition, Morgan Kaufman, Oct 31, 2011

Hause, M. 2014. “SOS for SoS: A New Paradigm for System of Systems Modeling.” Paper presented

at the IEEE, AIAA Aerospace Conference, Big Sky, US-MT, 1-8 March.

Hause, M., F. Dandashi, 2015. “UAF for System of Systems Modeling , Systems Conference

(SysCon).” Paper Presented at the 9th Annual IEEE Systems Conference, Vancouver, CA-

BC, 13-16 April.

Hause, M., Kihlström, L., 2022, You Can’t Touch This! - Logical Architectures in MBSE and the

UAF, presented at the 2022 INCOSE International Symposium, Detroit, Michigan, USA.

INCOSE 2015, Systems Engineering Handbook Fourth Edition, Published by Wiley

INCOSE 2021, Systems Engineering Body of Knowledge, SEEBOK

ISO 15288 2023, Systems and Software Engineering — System Life Cycle Processes, International

Standards Organization (ISO), ISO/IEC/IEEE FDIS 15288-2023.

ISO 42010 2022, Software, Systems and Enterprise — Architecture Description, International

Standards Organization (ISO), ISO/IEC/IEEE 42010-2022.

ISO 42020 2019, Software, Systems and Enterprise — Architecture Processes, International

Standards Organization (ISO), ISO/IEC/IEEE 42020-2019.

Martin, J 2020, “Enterprise Architecture Guide for the Unified Architecture Framework (UAF),”

presented at the INCOSE International Symposium.

MOD Architectural Framework, Version 1.2, 2020, Office of Public Sector Information,

https://www.gov.uk/guidance/mod-architecture-framework/

NATO Architecture Framework Version 4, January 2018, Architecture Capability Team Consultation,

Command & Control Board

OMG 2017, Unified Modeling Language, Version 2.5.1, Object Management Group,

https://www.omg.org/spec/UML/2.5.1/About-UML.

––––– 2019, Systems Modeling Language, Version 1.6, Object Management Group,

https://www.omg.org/spec/SysML/About-SysML/.

––––– 2022a, Unified Architecture Framework, Version 1.2, Object Management Group,

https://www.omg.org/spec/UAF/About-UAF/.

––––– 2022b, Unified Architecture Framework Modeling Language, Version 1.2, Object Management

Group.

––––– 2022c, Enterprise Architecture Guide for the Unified Architecture Framework (Informative),

Version 1.2, Object Management Group.

––––– 2022d, Unified Architecture Framework Sample Problem (Informative), Version 1.2, Object

Management Group.

Sjöberg P., Kihlström L., Hause M., 2017, An Industrial Example of Using Enterprise Architecture to

Speed Up Systems Development, INCOSE International Symposium, Adelaide, Australia

https://www.omg.org/spec/SysML/About-SysML/
https://www.omg.org/spec/UAF/About-UAF/

24

Biography

Lars-Olof Kihlström. Lars-Olof Kihlström is a principal consultant at

CAG Syntell where he has worked since 2013, primarily in the area of

MBSE. He has been a core member of the UAF group within the OMG

since its start as the UPDM group. He was involved in the development

of NAF as well as MODAF. He has worked with modelling in a variety

of domains since the middle of the 1980’s such as telecommunications,

automotive, defense as well as financial systems. He is specifically in-

terested in models that can be used to analyze the behavior of system

of systems.

Matthew Hause is an SSI Principal and MBSE Technical Specialist,

a former PTC Fellow, a co-chair of the UAF group and a member of

the OMG SysML specification team. He has been developing multi-

national complex systems for over 45 years as a systems and software

engineer. He started out working in the power systems industry and

has been involved in military command and control systems, SCADA,

distributed control, office automation and many other areas of tech-

nical and real-time systems. His roles have varied from project man-

ager to developer. He has written over 100 technical papers on archi-

tectural modeling, project management, systems engineering, model-

based engineering, human factors, virtual team management, product

line engineering, systems of systems, SysML and Architectural Frame-

works such as UAF, DoDAF and MODAF. He is a proud recipient of

the INCOSE MBSE Propeller Hat Award.

.

