

An Elaboration of Service Views within the UAF

Matthew Hause

Systems Solutions Inc (SSI)

3208 Misty Oaks Way, Round Rock, Texas,

USA

+1 917 514 7581

mhause@systemxi.com

Lars-Olof Kihlström

Syntell AB

PO Box 10022, SE-10055 Stockholm,

Sweden

+46 706661978

lars-olof.kihlstrom@syntell.se

Copyright © 2021 by Matthew Hause, Lars-Olof Kihlström. Permission granted to INCOSE to publish and use.

Abstract. Services in the Unified Architecture Framework (UAF) are not just software services.

Services can include transport, surveillance, communications, providing healthcare and medical

services, etc. The UAF implements DoDAF using the Systems Modeling Language (SysML) as

well as the British MODAF and NATO NAF. The DoDAF Service views implement services by

duplicating the systems views and labeling the systems elements as services. This causes some

confusion with engineers who either implement solution-based service views or ignore them

completely. Even when implemented, they can cause confusion in the model as it becomes diffi-

cult to tell if a model element describes a service or a system implementing a service. The UAF

implementation of the MODAF services views provides a distinct set of views, concepts and

traceability. The Service Oriented Views do not specify how the service is to be implemented, but

the requirements for the services. The Resources (Systems) Views implement services in various

phases and their deployment will modify the configurations of the system at the very highest level.

This paper will show how services views trace from capabilities and how that can be used to define

system resource requirements.

Introduction

Traditional Service-Oriented Architecture (SOA) is a style of software design where “services are

provided to the other components by application specific components, through a communication

protocol over a network.” (Microsoft, 2006). SOA and services have evolved over the years and

have taken on various definitions. The Open Group (2007) defines four properties of SOA:

• Is a logical representation of a repeatable business activity that has a specified outcome

(e.g., check customer credit, provide weather data, consolidate drilling reports).

• Is self-contained.

• May be composed of other services

• Is a “black box” to consumers of the service.

Note that the definition of SOA has changed from “how SOA is implemented in software” to the

purpose of SOA as a representation of a business activity and its drivers, influences and structure.

(Although not in the list, the service also should be loosely coupled.) The definition continued to

evolve. The SOA Manifesto Organization published a manifesto for service-oriented architecture

mailto:mhause@systemxi.com
mailto:lars-olof.kihlstrom@syntell.se

in October, 2009. They came up with the following six core values (formatting is from the origi-

nal):

“Business value over technical strategy

Strategic goals over project-specific benefits

Intrinsic interoperability over custom integration

Shared services over specific-purpose implementations

Flexibility over optimization

Evolutionary refinement over pursuit of initial perfection

That is, while we value the items on the right, we value the items on the left more.” (SOA Mani-

festo, 2009) Rather than simply a software implementation pattern, services are linked to business

value, process and strategic goals. They define a service at whatever level of the enterprise is ap-

propriate. Business processes are defined, services are specified that further define those pro-

cesses. The service names should be tied to or derived from business processes, rules, or policies.

They can then be implemented by software, systems, people, organizations, or whatever resources

are required. It is at this level (requirements) that the service views in the Unified Architecture

Framework (UAF) are defined. The purpose of this paper is to help users of the UAF understand

how best to use the services views in an architecture.

The Unified Architecture Framework (UAF)

The Systems Modeling Language (SysML) is the most widely used standardized systems mod-

eling language and notation. It is used to model systems in both the abstract and concrete (logical

and physical) views that include behavioral, structural, parametric and requirements views.

(OMG, 2017) For enterprise modeling, an architecture framework is required to understand sys-

tems of systems and how they change over time. DoDAF is the Department of Defense Archi-

tecture Framework (DoD, 2012) and MODAF is the Ministry of Defence Architecture Framework

(MOD, 2020). NATO created NAF version 3 (NATO Architecture Framework) based on MODAF

and has recently adopted NAF version 4 (NATO, 2018). Services are central to NAF version 4 and

it has been adopted by many European countries including the UK.

The Unified Architecture Framework (UAF) is built on top of SysML and is used to define the

overall goals, strategies, capabilities, interactions, standards, operational and systems architecture,

systems patterns and so forth (UAF, 2019). Security and human factors (personnel) views were

added to the UAF to improve the coverage of these areas of concern. The UAF was previously

called the Unified Profile for DoDAF and MODAF (UPDM) and was ratified by the Object

Management Group (OMG). Several papers have been written on the UAF and its support of SoS

modeling including (Hause, Dandashi 2015) and (Hause 2014). The full details of SysML and

UAF are not included here for space reasons. Please see the above references for more infor-

mation.

The UAF Services Views

The UAF Service views describe the services needed to directly support the elements described in

the Capability and Operational Views. The Service Views do not specify how the service is to be

implemented, but the requirements for the services. The implementation of the services is done by

the Resources Views. They are deployed in various phases and their deployment will modify the

configuration of the system at the very highest level. The UAF service views are derived from

MODAF and DoDAF, which have their own definitions for services.

MODAF: The SOVs are a set of views that specify services that are to be used in a service-oriented

architecture (SOA). In MODAF terms, services are an implementation-independent specification

of a packaged element of functionality. The views describe the specification of these services, how

services are orchestrated together for a purpose, the capabilities that services deliver and how

services are implemented. Note that the views do not focus on the detailed design of the service,

rather on the requirement the service fulfils. (MODAF, 2020)

DoDAF: The Service Views within the Services Viewpoint describe the design for service-based

solutions to support operational development processes (JCIDS) and Defense Acquisition System

or capability development within the Joint Capability Areas. (DoDAF, 2008)

The relationship between architecture data elements across the Service Viewpoint to the Opera-

tional Viewpoint and Capability Viewpoint can be exemplified as services are procured and

fielded to support organizations and their operations or a capability. (MODAF, 2020) Services in

UAF are intended to allow the operational layer to be developed without impacting on the resource

layer provided that the operational layer only makes use of the functionality provided by the ser-

vice interfaces. In the same sense the resource layer can also develop on its own without impacting

on the operational layer provided that the service interfaces are untouched. NAF version 4 places

services directly underneath the strategic layer and assumes that services are created directly as a

result of strategic decisions. (NATO, 2020)

The Example Model

Problem Statement. A young enterprise architect notices that Valentine’s Day is fast approaching

and wants to do something that will make his wife feel happy and appreciated. Being a romantic

person, he immediately starts to build a UAF model of the stakeholder wishes, requirements, and

detailed views of what he calls the Happiness Enterprise for ordering and delivering flowers. He

wants to define a set of services that will provide him the most flexibility for the eventual enter-

prise. So, he makes sure that he has full traceability in his model. This simple example will help to

illustrate how services views fit in with the rest of the architecture and how they can be used to

define requirements for their implementing systems. Figure 1 shows the Operational concepts of

the Happiness Enterprise.

Figure 1: Happiness Enterprise Concept Diagram

Enterprise Capability and Processes

For reasons of brevity, the initial diagrams and architecture have been omitted in order to con-

centrate on the services view. Figure 2 shows an initial set of capabilities and the operational ac-

tivities that map to them. These will form the basis of the services to be defined in the architecture.

Figure 2: Happiness Enterprise Capabilities and Operational Activities

Figure 2 shows the Product Order, Product Payment, Product Delivery, and Product Provision

capabilities. Capabilities define the ability to achieve a desired result. The names of the capabili-

ties are easily understandable. From these capabilities, Operational Activities are created/derived

from the capabilities. These map to the business processes that will be further decomposed or

expressed as activity diagrams (not shown for reasons of brevity).

Sv-Tx Service Taxonomy

Figure 3 shows the Service Taxonomy which defines service specifications and required metrics.

Figure 3: Services Taxonomy Diagram

Figure 3 shows the taxonomy of service specifications and the expectations of how well those

services are provided or required. The Sv-Tx view specifies the hierarchy of services as well as the

relationships between them. Services are not limited to internal system functions and can include

Human Computer Interface (HCI) and Graphical User Interface (GUI) functions or functions that

consume or produce service data to or from service functions. The external service data providers

and consumers can be used to represent the human that interacts with the service. Figure 3 shows

the services within the Happiness enterprise. Figure 3 shows the previously defined capabilities

and operational activities. From these we have defined four service specifications. These are the

Product Order Service, the Payment Service, The Product Supply Service and the Delivery Ser-

vice. These are the basis of the service architecture that will define how the Happiness Enterprise

will enable capabilities and business processes. Service methods owned by the services are also

shown. The Operational Activities consume/map to services and the services exhibit capabilities.

Sv-Tr Capability to Service Mapping

UAF has several built-in reports defining the traceability between and within views. The Sv-Tr

shows the traceability between capabilities and the service specifications that support them. These

reports can also depict the mapping of service specifications to operational activities and how

service specifications contribute to the achievement of a capability. Figure 4 shows which services

contribute to the achievement of the capabilities.

Figure 4 – Sv-Tr

Sv-Tx Service Interface Specifications

A service interface is a published interface used to invoke a service. An interface can be imple-

mented using any number of technologies. Service interface definitions implement a ser-

vice-oriented architecture to achieve interoperability among applications across a varied base of

underlying and changing technologies. Many UAF resource elements can provide and consume

services. Specifying the interface for the service provides a means of determining compatibility

between service consumers and providers. These service interfaces will be mapped to resource

interfaces in the same way that resource elements such as systems and capability configurations

will be mapped to service specifications. Figure 5 defines the interfaces that will provide access to

the services and those required by services.

Figure 5: Services Interfaces

The Delivery Interface and others describe how services interact with one another as well as in-

terfaces that implementing resources must provide.

Sv-Sr Services Internal Connectivity

The Service Internal Connectivity view demonstrate a combination of services required to exhibit

one or more capabilities. This shows the composition of services and how services are combined

into a higher-level service required to exhibit a capability or support an operational activity. This

also shows how the services are accessed and cooperate to support the capabilities. Figure 6 shows

the interactions between the services.

Figure 6 Happiness Services Internal Connectivity

An architecture such as this should be handled cautiously. Since the services are consumed by the

operational activities, they are activated from within the activities. This would imply that since

they are totally unaware of one another, they are just consumed. In UAF 1.1 the concept of a ser-

vice architecture does not exist, however this will be changed in the upcoming version 1.2. The

handling there would assume that a service can be built up of smaller services, i.e. if we want to

create a happiness service with its interfaces, we could build it up from the smaller services. It

would still need an interface towards the consumer, however. There may be several consumers of

the service and some form of consumption could be initiated by the service itself. (As this will be

realized by a commercial organization, one hopes that they will have many customers.) The ser-

vice would be invoked by the person that wants to surprise his wife with flowers and the interface

could give him options to do this. Payment Services can also be invoked by the service.

When showing a set of services interacting, one needs to remember that services are supposed to

be loosely coupled and that as far as the individual service is concerned the only external entity is

an unknown consumer, i.e. it has no internal awareness of the outside world. The orchestration

performed when defining how a set of services interact is owned by the service that is built up from

these services. Since these services are specifications, the orchestration is also just a way of

specifying the more complex service based on services that already exist thus avoiding the need to

specify internal parts of an already defined service specification. This means that an implementa-

tion of the complete service could occur in other ways. There is no requirement that the imple-

mented total service include the implementations of the service specifications that were used to

specify the total service. The implementation is up to the service provider.

Sv-Ct Service Policies

The Service Constraints view defines service policies that apply to implementations of service

specifications. It specifies traditional textual service policies that are constraints on the way that

service specifications are implemented within resources. The addition of SysML parametrics

provides a computational means of defining service policies across the enterprise or within a

specific service specification. The Sv-Ct defines constraints that must be adhered to by Consumers

and Providers of the Services via Service Policies. This also provides a means of performing

trade-off analysis of the possible service providers. As a minimum it defines a set of criteria to

determine whether the service provider meets the provision requirements defined by the con-

straints. Table 1 shows a sample of the services and their associated service policies.

Table 1 – Sv-Ct Service Policies

Sv-Is Service Interactions

The Service Interactions View defines the behavior of a service specification or set of specifica-

tions in terms of expected time-ordered examination of the interactions between service roles

(exemplified in Figure 6). It also specifies how service roles interact with each other, service

providers and consumers, and the sequence and dependencies of those interactions. It also shows

the invocation of the Service Methods to realize the services. Figure 7 shows a subset of the in-

teractions between the different services from the order request from the Husband to the delivery

of flowers to the Wife. The interactions between the services are events and signals. The message

to self is the invocation of a service method. Service Methods are behaviors owned by the service

to implement the service and are types of operations. Typically, architects will use service func-

tions (activities) or service methods (operations) to define and implement the behaviors as mod-

eling both could be redundant. Service functions provide a simple activity diagram format to de-

fine the order of the activities and the required inputs and outputs. Service methods also define

required and provided functionality with required inputs and outputs. Showing the order of in-

vocation of the service methods on an interaction diagram is problematic if only a single service

specification is required. (There would only be a single lifeline on the diagram, which looks silly.)

Figure 7 – Sv-Is Service Interaction Diagram

Both service functions and service methods can be show on state diagrams. The example in this

paper uses both to demonstrate the different ways of modeling behavior.

Sv-St Service States

The Service States View defines the behavior of a service specification in terms of state-based

behavior. Figure 8 shows the state diagram describing the state-based behavior of the Product

Order Service. The Sv-St defines behavioral constraints that must be adhered to by Consumers and

Providers of the Services. Specifically, it defines the state-based behavior of the service defining

the states, transitions between those states, the events that cause those transitions to take place and

behaviors within those states. Figure 8 shows the states of the Product Order Service from order

selection and creation through delivery. From the point of view of the customer, the order service

will track the order until complete delivered and notify the customer.

Figure 8 – Sv-St Service State Diagram

Other behaviors could be added such as a follow up questionnaire or satisfaction survey as is

typical when ordering products. Note that this service is aware of the state of the order as it pro-

gresses, but that it is the other services that perform the functions. Also note that it is the Product

Supply Service that arranges the delivery. Responsibility could have been assigned to the Product

Order Service, but the decision was made to outsource this to a local supplier. This is important

when determining the resource that will implement the service and whether it is done correctly.

Sv-Pr Service Processes

The Service Processes View defines the behavior of a service in terms of the service functions it is

expected to support and the resource functions that implement them. They provide detailed in-

formation regarding the allocation of service functions to service specifications, and data flows

between service functions. Two diagrams are used to define Service Functions – the Service

Processes Definition Diagram (a SysML Block Definition Diagram) and a Services Process Flow

Diagram (A SysML Activity Diagram). Figure 9 defines the Service Functions that the service

implementation performs and how they map to resource functions. In this example, the services

are responsible for product delivery, payment, etc., which are shown as service functions. Service

functions can be difficult to map properly to other parts such as the interactions defined by the

service itself. This is due to their granularity as well as the interactive nature of services.

Figure 9 Service Functions Mapped to Resource Functions and Service Specifications

A few of the service functions and resource functions are shown as examples. These service

functions would be further decomposed to sub-functions and expressed in activity diagrams. The

functions are implemented by the resource functions as shown in Figure 9. Figure 10 shows a

simplified activity diagram. This would be further refined to show order cancel, payment request

interactions, as well as additional interactions with the person making the order. At this stage it

simply specifies the required service functions and required data.

Figure 10 Provide Product Order Service Process

Services Roadmap

The Services Roadmap provides an overview of how a service specification changes over time. It

shows the combination of several service specifications mapped against a timeline. Figure 10

shows the Services for implementing Bob’s Flowers.

Figure 10 – Services Roadmap for Bob’s Flowers

Bob’s Flowers is a simple flower shop with all the services provided by the employees. For a large

enterprise this would show multiple service deployment, with the addition of new services being

deployed over time. In this case, Bob’s Flowers has decided to roll out what is known as a char-

acter delivery service. This is a common service provided with popular costumed characters in

addition to other products for parties or special occasions. This type of upsell would include he-

lium balloon bouquets, cards photo prints, etc.

Service Constraints

This view identifies measurable properties that can be used to support analysis such as KPIs,

MoEs, TPIs etc. It shows the measurable properties of something in the physical world, expressed

in amounts of a unit of measure that can be associated with any element in the architecture. Figure

11 shows a set of Required Service Levels and Provided Service Levels.

Figure 11 – Required and Provided Services

A Required Service Level is a set of parameters from the client to a service provider describing

their service expectations. A service provider prepares a service level agreement based on the

requirements from the customer. For example: A customer may require a system be operational for

99.95% of the year excluding maintenance. For trade-off analysis, these provide a means of de-

termining which implementation meets the customer’s expectations and recording provided val-

ues.

Service Implementation in Resources

The Services Domain View describes services and their interconnections that provide or support

capabilities. The Service Models associate service resources to the operational and capability re-

quirements. These resources support the operational activities and facilitate the exchange of in-

formation. The relationship between architectural data elements across the Services Viewpoint to

the Operational Viewpoint and Capability Viewpoint can be exemplified as services are procured

and fielded to support the operations and capabilities of organizations. The structural and behav-

ioral models in the operational and service views allow architects and stakeholders to quickly

ascertain which functions are carried out by humans and/or systems for each alternative specifi-

cation. This allows engineers to carry out tradeoff analysis based on risk, cost, reliability, etc.

Services can be implemented in a variety of different ways using systems, software, people, or-

ganizations, natural resources, etc. Figure 12 below shows a simple implementation of the various

services defined so far. In this example, the simple flower store implements the Product Order,

Payment, and Product Supply services. The Delivery Service is implemented by the Delivery

person. This represents the most basic form of service provisions making use of people and pro-

cesses. This of course assumes that the implementation of the services complies with the service

policies defined in the constraints views.

Figure 12: Flower Shop Context

In this case, the Husband physically goes to the Flower Shop. The flowers are selected by the

Husband and the owner or employee prepares the flowers. The Husband receives the flowers and

hands over a cash payment. The owner gives the flowers to the delivery person who delivers them

to the Wife. The owner informs the Husband that the flowers have been delivered and all is well.

Figure 13 defines a more complex implementation of the services architecture.

Figure 13: International Flower Company Context

In this architecture the services are each implemented by complex systems such as international

corporations and involves the outsourcing of services. The Product Order service is provided by

Teleflora. Aspects of the service could be outsourced such as the web presence, call services, and

internationalization. The Financial Service provides the Payment service. The Product Supply

service is provided by Door Dash which further outsources to a Delivery Person as a Gig Worker,

and the Flower Store supplies the Product Supply Service.

The UAF Services Views and MOSA

Modular Open Systems Approach (MOSA) is an integrated business and technical strategy for

assessment and implementation of open systems in the DoD. An open system is a system that

employs modular design tenets, uses widely supported and consensus-based standards for its key

Interfaces, and is subject to validation and verification, including test and evaluation, to ensure the

openness of its key interfaces. The Office of the Deputy Assistant Secretary of Defense (ODASD)

describes the DoD vision of MOSA and its benefits. “The Department of Defense’s (DoD) MOSA

is to design systems with highly cohesive, loosely coupled, and severable modules that can be

competed separately and acquired from independent vendors. This approach allows the Depart-

ment to acquire warfighting capabilities, including systems, subsystems, software components,

and services, with more flexibility and competition. MOSA implies a structure in which system

interfaces share common, widely accepted standards, with which conformance can be verified.

The DoD is actively pursuing MOSA in the life-cycle activities of its major defense acquisition

programs (MDAP) and major automated information systems (MAIS), in large part due to the

rapid evolution in technology and threats that require much faster cycle time for fielding and

modifying warfighting capabilities.” (ODASD, 2004) This is part of a comprehensive systems

engineering strategy. MOSA can accelerate and simplify the incremental delivery of new capa-

bilities into systems, enhance competition, facilitate technology refresh, incorporate innovation,

enable cost savings/cost avoidance and improve interoperability. Let’s look at MOSA systems

characteristics and principles and how the UAF services views addresses them

• Modular design that is cohesive, encapsulated, self-contained, and highly binned

The object-oriented mechanisms underpinning SysML and the UAF are based on the

principles of modular design, separation of concerns, encapsulation, and well-defined,

reusable components. Systems, services, architectures, software, etc. can be defined and

reused throughout the architecture. Making use of services views provides a means of

sharing between architectures, across projects and the systems.

• Key interface definition

UAF architectures define the required behavior/functionality interfaces leading to sys-

tem-to-system interfaces, dependencies and interactions with other systems and within the

subsystems, define interaction types: data, physical, logical, electrical, etc., define logical

interface requirements, define interaction performance characteristics, allocation of logical

to physical interfaces, service definitions, policies, standards and constraints.

• Design requirements (e.g., mandated open standards and protocols)

Requirements views provide a means of integrating requirements into the model to

demonstrate traceability and compliance. The Standards views define standards of all sorts

including open standards, protocols, operating procedures, processes, etc. System inter-

faces include protocols, and protocol stacks. The UAF itself is an open mandated standard.

• Architectural attributes (e.g., need for an adaptable, upgradeable and reconfigurable sys-

tem architecture)

UAF service views define implementation independent specifications for system capabil-

ities. Multiple system solutions can be evaluated to determine which meets the require-

ments in the best way. Operational system components can be replaced based on well de-

fined interfaces, functional specifications and performance requirements.

• Conformance certification

Standards compliance can be traced to all elements in the architecture and reports gener-

ated to demonstrate compliance. Requirements traceability reports demonstrate that system

requirements have been satisfied and verified. Integrated systems test and analysis tools

certify performance and functional requirements compliance.

Further Work on the UAF Services Views

UAF is currently undergoing a revision that will result in the creation of UAF version 1.2. This

version will still be based on the underlying use of SysML version 1.7. Since the connection be-

tween UAF and SysML will be maintained, UAF version 2 will presumably be needed once

SysML version 2 has been completed. In the revision work for 1.2 the handling of services is being

given an overhaul based on comments received from several parties. Below are several issues that

are being dealt with in UAF version 1.2:

• The concept of a service contract will be introduced that will act as a constraint on a se-

lected set of operational connectors in between operational elements, making it possi-

ble to designate specific parts of the operational exchanges as a specific contract.

• In order to clarify the distinction between a specification and a realization of a service, the

concept of Resource Service will be introduced as well as a resource service interface.

• As part of the creation of a service architecture element, the concept of service exchanges

will be introduced.

• There are other more detailed changes that are being considered.

Conclusions

The use of services and SOA has fulfilled its original purpose of making it possible to act as an

intermediary between the operational layer and the resources layer within an architecture. As long

as the interfaces that the operational layer makes use of are not touched, the operational logic can

be modified, and the operational approach be changed. In case these changes require the creation

of additional services, such services can be specified and implemented by the resource layer. In the

same fashion, the implementation of a service can also change as technology develops provided

that the interfaces are not changed. This enables the operations to continue without being affected

by the realization modification.

The service concept still causes a lot of confusion and it is hoped that the discussions in this paper

will help to alleviate this. It is hoped that the additions made in UAF version 1.2 will make it even

easier to define a proper use of the services concept as a part of an enterprise architecture.

References

DoDAF DoD CIO, 2012, DoD Architecture Framework Version 2.02, DoD Deputy Chief

Information Officer, Available online at

http://dodcio.defense.gov/dodaf20/dodaf20_pes.aspx, accessed June, 2014.

Microsoft, 2006, Chapter 1: Service Oriented Architecture, (SOA)

https://msdn.microsoft.com/en-us/library/bb833022.aspx

MOD Architectural Framework, Version 1.2, 2020, Office of Public Sector Information,

https://www.gov.uk/guidance/mod-architecture-framework/

NATO Architecture Framework Version 4, January 2018, Architecture Capability Team

Consultation, Command & Control Board

ODASD, 2004, Modular Open Systems Approach (MOSA) available at

https://www.acq.osd.mil/log/MPP/ats_opensystems.html

Object Management Group (OMG). 2013. OMG2013-08-04:2013. Unified Profile for

DoDAF/MODAF (UPDM) V2.1, http://www.omg.org/spec/UPDM/2.1/PDF

2012. OMG2012-06-01.OMG Systems Modeling Language (OMG SysML™), V1.3,

http://www.omg.org/spec/SysML/1.3/PDF/.

Object Management Group (OMG), 2019, The Unified Architecture Framework, (UAF) Available

from https://www.omg.org/spec/UAF

The SOA Manifesto, 2009, SOA Manifesto, Available at: http://www.soa-manifesto.org/

The Open Group, 2007, "Service-Oriented Architecture Standards - The Open Group". Available

from: www.opengroup.org/standards/soa

Biography

Lars-Olof Kihlström. Lars-Olof Kihlström is a principal consultant at

Syntell AB where he has worked since 2013, primarily in the area of MBSE.

He has been a core member of the UAF group within the OMG since its start

as the UPDM group. He was involved in the development of NAF as well as

MODAF. He has worked with modelling in a variety of domains such as

telecommunications, automotive, defence as well as financial systems. He is

specifically interested in models that can be used to analyze the behavior of

system of systems.

Matthew Hause. Matthew Hause is a principal consultant at SSI, a member

of the UAF group, and a member of the OMG SysML specification team. He

has been developing multi-national complex systems for almost 40 years as a

systems and software engineer. He worked in the power systems industry,

command and control systems, process control, SCADA, military systems,

and many other areas. His role at SSI includes consulting, mentoring,

standards development, specification of the UAF profile and training.

https://msdn.microsoft.com/en-us/library/bb833022.aspx
http://www.omg.org/spec/UPDM/2.1/PDF
http://www.omg.org/spec/SysML/1.3/PDF/
https://www.omg.org/spec/UAF
http://www.opengroup.org/standards/soa

